Биотопливо из опилок


Биотопливо из леса

Растёт спрос на биотоплива – горючие жидкости, изготовленные из возобновляемых биологических ресурсов. Один из них – древесина. Можно ли из древесины получать топливо, не уступающее нефтяному?

Первое, что нужно уяснить – это то, что именно бензина или керосина из дерева сделать нельзя. Оно не поддаётся разложению на углеводороды с прямой цепью, из которых главным образом состоят нефтепродукты. Однако это не означает, что из него нельзя получать вещества, способные заменить нефтепродукты.

Некоторые любят табуретовку

Первый в списке, конечно же, спирт. Из древесины можно получать два различных вида спирта. Первый, который так и называется древесным – по-научному метиловый спирт. Это вещество очень похоже на привычный этиловый спирт, как по горючести, так и по запаху и вкусу. Однако метиловый спирт отличается тем, что весьма ядовит, и приём его внутрь может привести к смертельному отравлению. Вместе с тем он является высококачественным моторным топливом, его октановое число даже выше, чем у этилового спирта, и намного выше, чем у обыкновенного бензина.

Технология получения метилового спирта из древесины очень проста. Он получается путём сухой перегонки, или пиролиза. Точнее, он является одной из составных частей жижки – смеси кислородсодержащих органических веществ, отделяющихся от свежевыгнанной древесной смолы. Однако выход полученного таким образом спирта слишком мал, чтобы он мог использоваться в качестве топлива. Это делает подобную технологию получения топлива бесперспективной.

Однако из древесины можно получить и этиловый спирт, в намного больших количествах. Этот спирт – так называемый гидролизный – получается при разложении целлюлозы, основного компонента древесины, с помощью серной кислоты. Вернее, при разложении целлюлозы получаются сахара, которые в свою очередь могут быть переработаны в спирт обычным путём. Этот способ получения этилового спирта весьма распространён в промышленности, именно гидролизным способом получают практически весь технический спирт, применяемый в непищевых целях.

Этиловый спирт может быть использован как непосредственно вместо бензина, так и в качестве присадки к бензину. Путём таких присадок получаются различные сорта биотоплива, популярные, в частности, в таких странах, как Бразилия.

Получение этилового спирта путём гидролиза древесины экономически несколько менее выгодно, чем получение его из различных сельскохозяйственных культур. Однако выгодной стороной такого способа получения биотоплива является то, что он не требует отведения сельскохозяйственных площадей под «топливные» культуры, не дающие пищевых продуктов, а позволяет использовать для его производства территории, задействованные в лесном хозяйстве. Это делает получение биотопливного этанола из древесины достаточно практичной технологией.

И терпентин на что-нибудь полезен

Недостатком этанола как топлива является его низкая теплота сгорания. При использовании в двигателях в чистом виде он даёт или меньшую мощность, или больший расход, чем бензин. Решить эту проблему помогает смешивание спирта с веществами с высокой теплотой сгорания. И не обязательно это продукты из нефти: в качестве такой присадки вполне годится скипидар, или терпентин.

Скипидар – тоже продукт переработки древесины, а если конкретно - хвойной: сосен, елей, лиственниц и других. Он достаточно широко применяется как растворитель, а наиболее очищенные его сорта находят применение в медицине. Однако лесоперерабатывающая промышленность в качестве побочного продукта производит большое количество так называемого сульфатного скипидара – низшего сорта, содержащего ядовитые примеси, не только неприменимого в медицине, но и находит весьма ограниченное применение в химической и лакокрасочной промышленности.

Вместе с тем скипидар из всех продуктов переработки древесины более всего похож на нефтепродукт, точнее – на керосин. Он отличается весьма высокой теплотой сгорания, может использоваться как горючее в керосиновых примусах, лампах, керогазах. Пригоден он и в качестве моторного топлива, правда, непродолжительное время: если его заливать в баки в чистом виде, двигатели вскоре выходят из строя из-за засмоления.

Однако скипидар можно использовать в качестве топлива не в чистом виде, а в качестве присадки к этанолу. Такая присадка не сильно снижает октановое число этилового спирта, но повышает теплоту его сгорания. Ещё одна положительная сторона такой технологии изготовления биотоплива в том, что скипидар денатурирует спирт, делает его непригодным для употребления внутрь в качестве алкоголя. А социальные последствия широкого внедрения неденатурированного спирта в качестве топлива могут стать весьма тяжелыми.

Лигниновые отходы – в доходы!

Такой компонент древесины, как лигнин, считается малополезным. Его применение в промышленности значительно менее широкое, нежели у целлюлозы. Несмотря на то, что он находит применение в производстве строительных материалов и в химической промышленности, чаще его просто сжигают прямо на лесохимпроизводстве. Однако, как выясняется, при пиролизе лигнина можно получить более разнообразные продукты, чем при пиролизе целлюлозы.

Лигнин состоит главным образом из ароматических циклов и коротких прямых углеводородных цепей. Соответственно, при его пиролизе получаются преимущественно углеводороды. Однако, в зависимости от технологии пиролиза, можно получать как продукт с высоким содержанием фенола и родственных ему веществ, так и жидкость, напоминающую нефтепродукты. Эта жидкость также пригодна в качестве присадки к этиловому спирту для получения биотоплива.

Разработаны технологии и установки для пиролиза, которые могут потреблять как лигнин из отвалов, так и неразделённые на лигнин и целлюлозу отходы древесины. Более высокие результаты получаются при смешивании лигнина или древесных отходов с мусором, состоящим из выброшенного пластика или резины: пиролизная жидкость получается более нефтеподобной.

Мирный атом и опилки

Ещё одна технология получения биотоплива из древесины разработана совсем недавно российскими учёными. Она относится к области радиохимии, то есть химических процессов, протекающих под воздействием радиоактивного излучения. В опытах учёных из ИФХЭ им. Фрумкина опилки и другие отходы древесины подвергались одновременному воздействию сильного бета-излучения и сухой перегонки, причём нагревание древесины проводилось именно с помощью сверхсильной радиации. Удивительно, но под воздействием радиации состав продуктов, получаемых при пиролизе, изменился.

В пиролизной жидкости, полученной «радиоактивным» способом, было обнаружено высокое содержание алканов и циклоалканов, то есть углеводородов, содержащихся главным образом в нефти. Эта жидкость получилась значительно легче нефти, сравнимой, скорее, с газоконденсатом. Причём экспертиза подтвердила пригодность этой жидкости для использования в качестве моторного топлива или переработки в высококачественные топлива, такие, как автомобильный бензин. Думаем, что это не заслуживает особого упоминания, но проясним ради успокоения страхов радиофобов: бета-излучение не способно вызывать наведённую радиоактивность, поэтому топливо, получаемое этим способом, безопасно и не проявляет радиоактивных свойств само.

Что пускать в переработку

Понятно, что предпочтительнее использовать для производства биотоплива не цельные стволы деревьев, а отходы переработки древесины, такие, как опилки, щепу, веточки, кору, да и тот же лигнин, который идёт в отвалы и печи. Выход этих отходов с гектара поваленного леса, конечно же, ниже, чем древесины в целом, но не следует забывать, что они получаются в качестве побочного продукта в производственных процессах, которые уже идут на многих предприятиях страны, соответственно, отходы производства дешевы и для их получения не нужно вырубать или засаживать под вырубку дополнительные площади леса.

В любом случае, древесина является ресурсом возобновляемым. Способы восстановления лесных площадей давно известны, а во многих регионах страны наблюдается даже и неконтролируемое зарастание лесом заброшенных сельскохозяйственных земель. Так или иначе, Российская Федерация не относится к странам, где к сбережению леса следует относиться со всем тщанием; площадей нашего леса и его потенциала к самовосстановлению вполне достаточно, чтобы загрузить полностью и лесоперерабатывающую промышленность, и производство биотоплив, и многие другие производства.

wood-prom.ru

Как сделать спирт из опилок: все способы получения биотоплива

Опилки – ценное сырье для производства различных спиртов, которые можно использовать в качестве горючего.

На таком биотопливе могут работать:

  • автомобильные и мотоциклетные бензиновые двигатели;
  • электрогенераторы;
  • хозяйственная бензиновая техника.

Основная проблема, которую приходится преодолевать при изготовлении биотоплива из опилок – это гидролиз, то есть превращение целлюлозы в глюкозу.

Основа у целлюлозы и глюкозы одна – углеводороды. Но для превращения одного вещества в другое необходимы различные физические и химические процессы.

Как получить спирт из опилок?

Основные технологии для преобразования опилок в глюкозу можно поделить на два типа:

  • промышленные, требующие сложного оборудования и дорогих ингредиентов;
  • домашние, не требующие какого-то сложного оборудования.

Вне зависимости от способа гидролиза, опилки необходимо максимально измельчить. Для этого применяют различные дробилки.

Чем меньше размер опилок, тем более эффективным будет разложение древесины на сахар и другие компоненты.

Найти более подробную информацию об оборудовании для измельчения опилок вы сможете здесь: Оборудование для переработки древесных отходов. Никакой другой подготовки опилки не требуют.

Промышленный способ

Опилки засыпают в вертикальный бункер, затем заливают раствором серной кислоты (40 %) в соотношении 1:1 по массе и, закрыв герметично, нагревают до температуры 200–250 градусов.

В таком состоянии опилки держат 60–80 минут, постоянно перемешивая.

За это время проходит процесс гидролиза и целлюлоза, впитывая воду, распадается на глюкозу и другие составляющие.

Полученное в результате этой операции вещество процеживают, получая смесь раствора глюкозы с серной кислотой.

Очищенную жидкость сливают в отдельную емкость и смешивают с раствором мела, который нейтрализует кислоту.

Затем все отфильтровывают и получают:

  • ядовитые отходы;
  • раствор глюкозы.

Недостаток этого метода в:

  • высоких требованиях к материалу, из которого изготовлено оборудование;
  • больших расходах на регенерацию кислоты,

поэтому широкого распространения он не получил.

Существует и менее затратный метод, в котором используют раствор серной кислоты крепостью 0,5–1 %.

Однако для эффективного гидролиза необходимы:

  • высокое давления (10–15 атмосфер);
  • нагрев до 160–190 градусов.

Время протекания процесса 70–90 минут.

Оборудование для такого процесса можно изготовить из менее дорогих материалов, ведь столь разбавленный раствор кислоты менее агрессивен, чем тот, который применяют в описанном выше методе.

А давление в 15 атмосфер не является опасным даже для обычного химического оборудования, ведь многие процессы также проходят при высоком давлении.

Для обоих методов применяют стальные, герметично закрывающиеся емкости объемом до 70 м³, выложенные изнутри кислотоупорным кирпичом или плиткой.

Такая футеровка защищает металл от контакта с кислотой.

Нагревают содержимое емкостей, подавая в них раскаленный пар.

Сверху устанавливают спускной клапан, который настраивают на необходимое давление. Поэтому излишки пара выходят в атмосферу. Остальной пар создает необходимое давление.

В обоих методах задействован один и тот же химический процесс. Под воздействием серной кислоты целлюлоза (C6h20O5)n впитывает воду h3O и превращается в глюкозу nC6h22O6, то есть смесь различных сахаров.

После очистки эту глюкозу используют не только для получения биотоплива, но и для производства:

  • питьевого и технического спирта;
  • сахара;
  • метанола.

Оба метода позволяют перерабатывать древесину любых пород, поэтому являются универсальными.

В качестве побочного продукта переработки опилок в спирт получают лигнин – вещество, склеивающее:

Поэтому лигнин можно продавать предприятиям и предпринимателям, которые занимаются производством пеллет и брикетов из отходов древесины.

Еще один побочный продукт гидролиза – фурфурол. Это маслянистая жидкость, эффективный антисептик для обработки древесины.

Фурфурол также применяют для:

  • очистки нефти;
  • очистки растительного масла;
  • производства пластмасс;
  • создания противогрибковых лекарств.

В процессе обработки опилок кислотой выделяются ядовитые газы, поэтому:

  • все оборудование необходимо монтировать в проветриваемом цеху;
  • работники должны надевать защитные очки и респираторы.

Выход глюкозы по массе составляет 40–60 % от веса опилок, но с учетом большого количества воды и примесей вес продукта в несколько раз больше исходного веса сырья.

Лишняя вода будет удалена в процессе перегонки.

Кроме лигнина побочными продуктами обоих процессов являются:

которые можно продать, получив какую-то прибыль.

Очистка раствора глюкозы

Очистку проводят в несколько этапов:

  1. Механическая очистка с помощью сепаратора удаляет из раствора лигнин.
  2. Обработка меловым молоком нейтрализует кислоту.
  3. Отстаивание разделяет продукт на жидкий раствор глюкозы и карбонаты, которые затем используют для получения алебастра.

Вот здесь описан технологический цикл переработки древесины на гидролизном заводе в городе Тавда (Свердловская Область).

Этот способ проще, но занимает в среднем 2 года. Опилки насыпают большой кучей и обильно поливают водой, после чего:

  • накрывают чем-нибудь;
  • оставляют преть.

Температура внутри кучи поднимается и начинается процесс гидролиза, в результате которого целлюлоза превращается в глюкозу, которую можно использовать для брожения.

Минус этого метода в том, что при низкой температуре активность процесса гидролиза снижается, а при отрицательной полностью прекращается.

Поэтому такой метод эффективен лишь в теплых регионах.

Кроме того, велика вероятность перерождения процесса гидролиза в гниение, из-за чего получится не глюкоза, а ил, а вся целлюлоза превратится в:

  • углекислый газ;
  • небольшое количество метана.

Иногда в домах строят установки, подобные промышленным. Их изготавливают из нержавеющей стали, которая без последствий выдерживает воздействие слабого раствора серной кислоты.

Нагревают содержимое таких аппаратов с помощью:

  • открытого огня (костер);
  • змеевика из нержавеющей стали с циркулирующим по нему раскаленным воздухом или паром.

Закачивая в емкость пар или воздух и отслеживая показания манометра, регулируют давление в емкости. Процесс гидролиза начинается при давлении в 5 атмосфер, но наиболее эффективно протекает при давлении 7–10 атмосфер.

Затем так же, как и при промышленном производстве:

  • очищают раствор от лигнина;
  • обрабатывают с помощью раствора мела.

После этого раствор глюкозы отстаивают и сбраживают с добавлением дрожжей.

Брожение и перегонка

Для брожения в раствор глюкозы добавляют обычные дрожжи, которые активизируют процесс брожения.

Эту технологию используют как на предприятиях, так и при получении спирта из опилок в домашних условиях.

Время брожения 5–15 дней, в зависимости от:

  • температуры воздуха;
  • породы древесины.

Процесс брожения контролируют по количеству образования пузырьков углекислого газа.

Во время брожения происходит такой химический процесс – глюкоза nC6h22O6 распадается на:

  • углекислый газ (2CO2);
  • спирт (2C2H5OH).

После окончания брожения материал подвергают перегонке – нагреву до температуры 70–80 градусов и охлаждению отходящего пара.

При такой температуре из раствора испаряются:

а вода и водорастворимые примеси остаются.

Для:

  • охлаждения пара;
  • конденсации спирта

используют змеевик, погруженный в холодную воду или охлаждаемый холодным воздухом.

Для увеличения крепости готового продукта его перегоняют еще 2–4 раза, постепенно снижая температуру до значения 50–55 градусов.

Крепость полученного продукта определяют с помощью спиртометра, который оценивает удельную плотность вещества.

В качестве биотоплива можно использовать продукт перегонки с крепостью не менее 80 %. В менее крепком продукте слишком много воды, поэтому техника будет работать на нем неэффективно.

Хотя спирт, полученный из опилок, очень похож на самогон, его нельзя использовать для питья из-за большого содержания метанола, который является сильным ядом. Кроме того, большое количество сивушных масел портит вкус готового продукта.

Чтобы очистить от метанола, необходимо:

  • первую перегонку проводить при температуре 60 градусов;
  • слить первые 10 % полученного продукта.

После перегонки остаются:

  • тяжелые фракции скипидара;
  • дрожжевая масса, которую можно использовать как для сбраживания следующей партии глюкозы, так и для получения кормовых дрожжей.

Они более питательны и полезны, чем зерно любых злаковых культур, поэтому их охотно покупают фермерские хозяйства, разводящие крупный и мелкий скот.

По сравнению с бензином у биотоплива (спирта, полученного из переработанных отходов) есть как преимущества, так и недостатки.

Вот основные преимущества:

  • высокое (105–113) октановое число;
  • меньшая температура горения;
  • отсутствие серы;
  • меньшая цена.

Благодаря высокому октановому числу можно увеличить степень сжатия, повысив мощность и экономичность мотора.

Меньшая температура сгорания:

  • увеличивает срок службы клапанов и поршней;
  • снижает нагрев двигателя в режиме максимальной мощности.

Благодаря отсутствию серы, биотопливо не загрязняет воздух и не сокращает срок службы моторного масла, ведь оксид серы окисляет масло, ухудшая его характеристики и снижая ресурс.

Благодаря значительно менее высокой цене (если не считать акцизы), биотопливо серьезно экономит семейный бюджет.

Есть у биотоплива и недостатки:

  • агрессивность по отношению к резиновым деталям;
  • низкое массовое соотношение топливо/воздух (1:9);
  • слабая испаряемость.

Биотопливо повреждает резиновые уплотнители, поэтому во время переделки мотора для работы на спирту все резиновые уплотнители меняют на полиуретановые детали.

Из-за меньшего соотношения топливо-воздух для нормальной работы на биотопливе необходима перенастройка топливной системы, то есть установка жиклеров большего сечения в карбюратор или перепрошивка контроллера инжектора.

Из-за слабой испаряемости затруднен пуск холодного двигателя при температуре ниже плюс 10 градусов.

Чтобы решить эту проблему, биотопливо разбавляют бензином в соотношении 7:1 или 8:1.

Для работы на смеси бензина и биотоплива в соотношении 1:1 никакой переделки двигателя не требуется.

Если же спирта будет больше, то желательно:

  • заменить все резиновые уплотнители на полиуретановые;
  • прошлифовать головку блока цилиндров.

Шлифовка необходима для увеличения степени сжатия, что позволит реализовать более высокое октановое число. Без такой переделки двигатель будет терять в мощности при добавлении в бензин спирта.

Если же биотопливо используют для электрогенераторов или бытовых бензиновых приборов, то желательна замена резиновых деталей на полиуретановые.

В таких устройствах можно обойтись без шлифовки головки, потому что небольшая потеря мощности компенсируется увеличением подачи топлива. Кроме того, потребуется перенастройка карбюратора или инжектора, это сможет сделать любой специалист по топливным системам.

Более подробно о применении биотоплива и переделке моторов для работы на нем читайте в этой статье (Применение биотоплива).

Видео по теме

О том, как сделать спирт из опилок, вы можете увидеть в данном видео:

Выводы

Производство спирта из опилок – сложный процесс, который включает в себя массу операций.

Если есть дешевые или бесплатные опилки, то, заливая биотопливо в бак своего автомобиля, вы серьезно сэкономите, ведь его производство обходится заметно дешевле бензина.

Теперь вы знаете, как получить спирт из опилок, применяемый в качестве биотоплива и как это можно сделать в домашних условиях.

Кроме того, вы узнали о побочных продуктах, которые возникают в процессе переработки опилок в биотопливо. Эти продукты также можно продать, получив пусть и небольшую, но все же выгоду.

Благодаря этому бизнес по производству биотоплива из опилок становится весьма выгодным, особенно если использовать топливо для собственного транспорта и не платить акцизный сбор на продажу спирта.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

rcycle.net

Производство биотоплива из водорослей, опилок и рапса

Любому водителю далеко не все равно, что льется в бак его машины. Во многих случаях именно некачественное топливо приводит к серьезным проблемам с автомобилем. Поэтому вполне понятен интерес ко всему, что связано с бензином, соляркой и прочими видами топлива. А как следствие этого – к альтернативным видам горючего для ДВС, одним из которых является биотопливо.

Что это такое, и из чего делают биотопливо?

Все ресурсы, которые есть на Земле, условно можно поделить на возобновляемые и не возобновляемые. Уголь, нефть, металл, в природе не восстанавливаются, а вот дрова, кукуруза, навоз могут быть получены вновь и вновь. Все, что растет или является отходами переработки такого сырья – источники возобновляемой энергии. Вот из этих биоресурсов люди ещё с давних пор получали нужное для своего существования, в том числе и биотопливо.

Биотопливо первого поколения

Однако и между собой отдельные его виды различаются, скажем так, по значимости источников сырья для биотоплива. Связано это с используемыми ресурсами. Например, чтобы получить биотопливо из рапса, его надо сначала вырастить, а уж потом отправить семена на переработку. Для выращивания такой культуры занимается посевная площадь, и фактически речь идет о выборе приоритетов – а чего мы хотим иметь, продукты питания или биотопливо. Кроме того, получение биомассы, идущей на производство биотоплива, связано с использованием специализированных удобрений, что наносит определённый вред земле и окружающей природе. Такой вид сырья относится к первому поколению.

Второе поколение

Однако биотопливо можно получить из иных источников, таких как отходы других производств. Его делают, например, из опилок, а также остатков стеблей, шелухи, остающейся после обработки зерновых, и многого другого. Все это дает так называемое биотопливо второго поколения, для которого не требуется специально выращивать сырье, а сделать его можно из отходов других производств.

Третье поколение

Следующим этапом развития стало биотопливо третьего поколения. Его источником являются водоросли. Существуют определённые их сорта, содержащие значительное количество растительных жиров, из которых можно сделать тот же самый биодизель. Конечно, чтобы получить биотопливо из водорослей, их надо выращивать, но для этого совсем не требуется занимать посевные площади. Водоросли могут расти в прудах, биореакторах, на морском дне или в специально устроенных заливах, т.е. занимают те участки земной поверхности и морского дна, которые не задействованы в производстве продуктов питания. Так что, биотопливо третьего поколения, хотя и находится еще в стадии отработки технологии производства, надо признать наиболее перспективным.

Двигатель на биотопливе – немного истории и его варианты

Это для нас сегодня бензин и солярка являются единственными видами топлива, на которых работает всем нам привычный двигатель. Но надо отметить, что далеко не всегда было именно так. На заре своего существования, для ДВС как топливо применялось всё, что только подходило – масло, спирт, эфир, газ, дрова и т.д.

Поэтому должно быть достаточно интересно вспомнить о биотопливе, которое использовалось раньше. В этом случае стоит особо отметить:

  • спирт в различных его видах;
  • масло;
  • газ.

Биотопливо из опилок или спирт как он есть

Биотопливо подобного типа наиболее известно, и по-видимому, это один из первых вариантов горючего, которое потреблял двигатель. Среди различных его видов стоит отметить биоэтанол, биометанол и биобутанол.

1.Этанол или обычный спирт достаточно хорошо известен в истории автомобилестроения. Достаточно сказать, что в свое время Генри Форд организовывал строительство заводов по производству спирта, предназначенного на роль топлива. Сейчас его изготовление широко развернуто в Бразилии, по оценкам экспертов, сорок процентов автотранспорта этой страны используют этанол в чистом виде, шестьдесят процентов – в смеси с бензином.

Из чего сегодня делают этанол? Чаще всего сырьем служит сельскохозяйственная продукция, в той же Бразилии, чтобы сделать биоэтанол, применяют сахарный тростник, солому, древесные отходы и другое аналогичное сырье. Из опилок на гидролизном производстве так же можно получить этанол. Чем же он так хорош, что это вызывает его всеобщее использование? Здесь надо обратить внимание на:

  1. детонационную стойкость;
  2. теплоту сгорания;
  3. теплоту испарения.

Из чего бы ни пришлось сделать подобное биотопливо, из опилок или тростника, ему свойственны антидетонационные свойства, они выше, чем у обычного бензина. Благодаря этому можно повысить мощность, двигатель, работающий на этаноле, допускает увеличение степени сжатия. Теплота сгорания спиртовоздушной смеси незначительно отличается от характеристик традиционной топливовоздушной смеси, а за счет хорошей испаряемости спирта обеспечивается лучшее наполнение цилиндров и полное ее сгорание.

Из недостатков этанола стоит отметить его повышенную агрессивность по отношению к некоторым цветным металлам, пластмассам и резине, вследствие чего может возникнуть необходимость частично дорабатывать двигатель. Однако самым главным минусом такого горючего является его гигроскопичность, оно сильно поглощает воду, а затем смесь расслаивается в баке, в результате чего он окажется заполнен в основном водой. Одним из методов борьбы с этим является использование смесей спирта и бензина, до десяти процентов этанола, добавленного в обычный бензин, только улучшают его характеристики.

Дополнительно стоит отметить, что производство биоэтанола как топлива, хоть из тех же самых опилок, отличается от производства питьевого спирта. Топливный спирт не пригоден для питья, он имеет явно выраженный сивушный запах и повышенное содержание метанола.

2.Метанол, или метиловый спирт, при всех своих достоинствах ядовит. Хотя его можно сделать из отходов, из тех же самых опилок, обычно биометанол не используют в качестве горючего. 3.Биобутанол. Как биотопливо для автомобилей подходит даже в большей степени, чем биоэтанол. Может изготавливаться из биомассы, опилок, и при этом ничем не отличаться от бутанола, полученного по традиционной технологии.

Среди его достоинств необходимо отметить:

  • большую энергетическую ценность;
  • меньшую агрессивность;
  • возможность смешиваться с бензином;
  • возможность прямой и полной замены бензина без переделки автомобиля.

Рассматривая спирт как замену бензину, стоит отметить, что плюсы и минусы биотоплива подобного типа достаточно очевидны, и все недостатки при необходимости могут быть успешно устранены. Однако в настоящее время такое биотопливо чаще всего применяется в смеси с обычным бензином, хотя технологии его получения, например из опилок, позволяют полностью реализовывать используемую биомассу и исключить нефть из употребления.

Биодизель, или как сделать биотопливо

Это другой, не менее известный вид горючего. Он заменяет солярку, а не бензин. Производят его из растительного масла. Сырье в различных районах земного шара может быть разное: рапсовое, пальмовое, кокосовое, соевое масло, водоросли и т.д. Биотопливо подобного типа изготавливается достаточно просто, вплоть до того, что существуют самодельные установки, позволяющие производить биотопливо в домашних условиях.

Технология его получения такова – масло смешивается в определенных пропорциях со спиртом и щелочью, в результате образуется биодизель и высвобождается глицерин, который может использоваться для каких-то других целей. Так что при наличии источников растительного масла, в том числе и его остатков после кулинарной обработки пищи, вполне возможно сделать биотопливо своими руками.

Достоинством биодизеля является отсутствие серы в составе выхлопных газов, и как следствие этого то, что такое биотопливо не теряет смазочных свойств, благодаря чему двигатель может служить гораздо дольше. Надо отметить, что вредного воздействия от такого топлива на окружающую природу нет. К недостаткам биодизеля стоит отнести необходимость его подогрева в холодное время года и то, что он не хранится более трех месяцев.

Наиболее оптимальным признано его использование в смеси с обычной соляркой, выпускаются несколько разновидностей такого топлива, обозначаемых буквой В, а цифры рядом говорят о содержании биодизеля в составе топлива. Например, В5 означает содержание в нем пяти процентов биодизеля и девяноста пяти процентов солярки.

Газ как вид автомобильного топлива

Существует и биотопливо в виде газа. Источником его является биогаз, получаемый как результат анаэробного (без доступа воздуха, метанового) брожения навоза. Однако рассматривать его как достаточно массовый вид горючего для двигателей автомобиля было бы слишком оптимистично.

Хотя, как и обычный природный газ или пропан-бутан, биогаз может использоваться как топливо, но это скорее вариант для стационарных двигателей, установленных в местах, где много отходов животноводства и сельского хозяйства.

Непривычные, экзотические и забытые виды биотоплива

Здесь стоит коснуться древесины, которая может выступать как биотопливо. В первую очередь надо упомянуть скипидарно-спиртовую смесь, которая ещё в 1826 году использовалась в роли топлива. А ведь скипидар получают при пиролизе древесины. Есть отдельные упоминания, что при так называемом «быстром» высокотемпературном пиролизе сконденсирована жидкость, по своим характеристикам алогичная нефти.

Стоит вспомнить и прямое применение древесины как горючего для моторов. При сгорании древесины образуется окись углерода, которая и служит в качестве топлива. Во время Второй Мировой, Германией достаточно широко использовались машины с такими моторами, в том числе и легковые. В Советском Союзе так же были созданы газогенераторные автомобили, ЗИС 21, ЗИС 13, а также ГАЗ 42.

Работали они на обычных дровяных чурочках. Правда, при замене бензина на газ мощность двигателя падала, скорость движения и грузоподъемность тоже, а одной заправки газогенераторной установки хватало на девяносто километров пробега, но в условиях военного времени при дефиците других видов топлива и в удаленных местах такие автомобили успешно работали. И даже в Москве в военное время ходили автобусы, оснащенные газогенераторными установками.

Несмотря на всеобщее распространение бензина и солярки в качестве топлива для ДВС, постоянно идут поиски альтернативных источников получения горючего. И уже существует несколько самых разных видов биотоплива, способного обеспечить работу ДВС в любых условиях.

znanieavto.ru

Бензин польется из опилок

Движение «зеленых» по всему миру заставило человечество задуматься о ценности лесов, и теперь каждая уважающая себя корпорация, будучи главным потребителем офисной бумаги, добавляет к своей электронной корреспонденции строчку вроде «Пожалуйста, подумайте об окружающей среде, прежде чем отравлять этот документ в печать (Please consider the environment before printing this e-mail)».

Однако если электронная документация постепенно заменяет бумажную даже в самых консервативных сферах деятельности человека, то вот бензин пока заменить особо-то и нечем.

Китайские ученые впервые продемонстрировали, как можно осуществить достаточно дешевую и эффективную переработку древесины в биоэтанол и биодизельное топливо.

Сколько бы запасов нефти ни было разведано в грядущие годы, рано или поздно её подземные резервуары должны иссякнуть. Спор о том, синтезируется ли новая нефть в глубинах земли и океана или этот природный ресурс невосполним, пока не закрыт, но человечество все сильнее начинает задумываться об альтернативных источниках энергии. И если энергия атома или энергия, вырабатываемая гидроэлектростанциями, сможет покрыть какую-то часть потребностей индустрии и домашних хозяйств, то, как быть с огромным парком автотранспорта, до сих пор непонятно.

Большинство учных полагают, что углеводороды возникают они при разложении живых существ, как догадался ещ Михаил Васильевич Ломоносов. В... →

Считается, что лучшей заменой природному топливу может стать синтетический водород, однако эффективных и дешевых способов его получения, по всей видимости, придется подождать еще не пять и не десять лет. Между тем нехватка топлива, получаемого из нефти, ощущается уже сейчас. Косвенно это демонстрируют цены на нефть и нефтепродукты, упорно растущие день ото дня.

Заменить бензин можно биотопливом — этанолом и биодизелем, получаемыми переработкой растений. И пусть этот вид горючего не решит окончательно проблему выбросов СО2 в атмосферу, он все же является возобновляемым и более экологичным видом горючего для автотранспорта. В конце концов, пока растения, применяемые при его производстве, растут, они эффективно связывают углекислый газ в процессе фотосинтеза.

Именно поэтому многие автомобильные гиганты напрямую спонсируют разработки по переработке сахарной свеклы и тростника в биотопливо. Эти растения наиболее богаты крахмалом — основным исходным компонентом для производства этанола из природного сырья.

Однако, как недавно убедительно показали исследования Всемирного банка,

массовое использование сельскохозяйственных угодий под выращивание свеклы и тростника вместо пшеницы и капусты уже привело к значительному росту цен на продовольствие во всем мире.

В связи с этим возлагается много надежд на так называемое биотопливо второго поколения, которое будет производиться из большего количества природного сырья. Большую часть растительной биомассы составляют целлюлоза и лигнин. Однако их переработка в легкие углеводородные молекулы куда более сложна.

Даже природа за миллионы лет эволюции смогла наделить аппаратом усвоения целлюлозы лишь относительно небольшое количество живых существ, основную часть которых составляют насекомые или вовсе бактерии.

Человеку это умение не дано, зато он, похоже, не зря учился грызть гранит науки. Пока химики-технологи всего мира отчаянно пытаются оправдать сотни миллионов долларов, вложенных корпорациями в разработку методов переработки целлюлозы в жидкое биотопливо, китайские ученые обратили свой взор на молекулы лигнина, который также составляет значительную часть биомассы.

(от лат. lignum – дерево, древесина) – вещество, характеризующее одеревеневшие стенки растительных клеток. Сложное полимерное соединение... →

Природные полимерные молекулы, в принципе, не так уж и сложно разорвать на мелкие кусочки, однако отличие технологии от лабораторных экспериментов в том и состоит, что сделать это необходимо максимально дешево, в больших масштабах и при строгом контроле продукции на выходе. Именно в отсутствие возможности контроля продуктов разложения сложных природных молекул и упирается промышленное получение биотоплива из древесины.

Юань Коу из Пекинского университета вместе со своими коллегами продемонстрировал методику контролируемого разложения лигнина, в результате которого образуются алканы и спирты — основные компоненты биодизеля и биоэтанольного топлива.

Разумеется, процесс этот идет в несколько стадий, наиболее сложной из которых является стадия разрыва многочисленных связей углерод--кислород--углерод. Короткие органические цепочки, образующиеся в результате такой реакции лигнина, могут дальше уже разделяться, проходить дополнительную обработку и превращаться в насыщенные углеводороды и спирты.

Загвоздка в том, что для более эффективной конверсии лигнина в биоэтанол необходимо сохранить в коротких обрывках природной молекулы некоторое количество остаточных С--О--С связей. Они являются залогом легкого получения этанола на завершающих стадиях переработки природного сырья.

Как это часто бывает в химической технологии,

все ноу-хау авторов очередной инновации заключается в тщательном подборе параметров, при которых идет тот или иной технологический процесс.

В этом случае успех может потребовать не одного года напряженной работы, а потому подобные открытия демонстрируют только самые динамичные научные коллективы. Так же получилось и в случае китайских ученых. Статью о своих достижениях химики опубликовали в журнале ChemSusChem.

Команда Коу в новом цикле своих работ обратилась к прежним наработкам, согласно которым наилучшим растворителем для проведения реакции разложения лигнина является вода, нагретая до температуры в 250–300о С и находящая под давлением примерно в 70 атмосфер. Эти условия для воды являются близкими к критическим: если и дальше поднимать температуру и давление, то вода перейдет в сверхкритическое состояние, в котором свойства жидкой воды не будут отличаться от свойств водяных паров.

Естественно, одной только горячей воды и высокого давления мало для контролируемого разложения природной полимерной молекулы. Команда Коу экспериментировала с различными катализаторами, наилучшим из которых оказалась платина на углеродном носителе. Если же к воде примешать небольшую фракцию органического растворителя диоксана, это приведет к большому выходу и мономерных звеньев лигнина, содержащих только концевые связи углерод--кислород, и димеров с одной связью С--О--С внутри молекулы.

При выходе лигниновых мономеров до 45% выход димеров может составлять почти 12%, таким образом суммарный выход технологического процесса превышает 50%, что вдвое превышает выход всех предыдущих технологий!

смесь лгких углеводородов с температурой кипения от 30°C до 200°C. Плотность около 0,7 г/см 3 . Теплотворная способность примерно... →

Переработка полученных мономерных и димерных звеньев на дальнейших стадиях процесса — давно отлаженный промышленностью процесс. Он позволяет получать алканы с числом атомов в цепи от восьми до девяти, что является бензиновой фракцией, алканы с числом атомов от 12 до 18 могут пойти на производство биодизельного топлива, а этанол, также образующийся в ходе переработки, автомобильные двигатели уже научились потреблять в чистом виде.

По идее, эта технология переработки древесины в биотопливо подразумевает использование отходов деревоперерабатывающей промышленности. Научится ли человечество делать бензин из опилок и хватит ли этого топлива на всех — вопрос спорный. Чтобы узнать ответ, придется подождать внедрения китайской инновации в промышленный процесс.

www.gazeta.ru


Смотрите также