Как найти резонансную частоту


Резонансная частота.

 Параллельный колебательный контур (рисунок 1) или последовательный колебательный контур (рисунок 2) могут использоваться в генераторах синусоидальных колебаний. Если в одной из этих схем зарядить конденсатор то он будет разряжаться заряжая катушку индуктивности, катушка разряжаясь будет заряжать конденсатор, этот процесс будет повторяться с определённым периодом T. Период это время одного колебания. Частота колебаний это величина обратная периоду. Разделив единицу на численное значение периода получим  численное значение частоты. Рисунок 1 -  Параллельный колебательный контур

Рисунок 2 -  Последовательный колебательный контур  

 Частота возникших колебаний называется собственной частотой колебаний контура для контуров изображённых на рисунках выше эта частота равна резонансной частоте этих контуров. Резонансная частота контура зависит от индуктивности L и ёмкости C её элементов, для колебательного контура (последовательного или параллельного) её можно найти по формуле: Где L-индуктивность катушки контура, C-ёмкость конденсатора контура. Если на параллельный или последовательный колебательный контур подавать переменное синусоидальное напряжение и изменять его частоту то будут меняться реактивные сопротивления элементов контура, если частота увеличивается то сопротивление конденсатора уменьшается а сопротивление катушки увеличивается и наоборот: если частота уменьшается то сопротивление конденсатора увеличивается а сопротивление катушки уменьшается, очевидно что есть такая частота при которой сопротивление катушки и конденсатора равны эта частота и есть резонансная. Сопротивление параллельного колебательного контура при этой частоте будет наибольшим (по сравнению с сопротивлениями этого контура при других частотах) а сопротивление последовательного колебательного контура при такой частоте будет наименьшим. Эти свойства контуров используют для построения фильтров например в полосно-пропускающем фильтре последовательно с нагрузкой ставиться последовательный контур и при подаче на это соединение (нагрузки и контура) переменного напряжения с резонансной частотой ток в нагрузке будет максимальным при других частотах ток будет меньше. Резонанс в параллельном контуре называют - резонансом токов, резонанс в последовательном контуре - резонансом напряжений. Можно простым способом определить каким будет сопротивление контура при резонансной частоте: например допустим что на параллельный колебательный контур подаётся постоянный ток, постоянный ток можно считать частным случаем переменного короче говоря постоянный ток это переменный с наименьшей возможной частотой, известно что при постоянном токе катушка действует как перемычка следовательно сопротивление контура будет равно нулю если резонансная частота не бесконечно мала (т.е. не постоянный ток) и сопротивление есть то оно больше нуля (т.е. сопротивления при постоянном токе) следовательно сопротивление параллельного колебательного контура на резонансной частоте максимальное а у последовательного контура наоборот. Зная то что конденсатор постоянный ток не пропускает, можно аналогично определить каким д.б. сопротивление последовательного контура на резонансной частоте. Выведем формулу для расчёта резонансной частоты зная то что при резонансе реактивные сопротивления элементов (катушки и конденсатора) контура равны: Для расчёта резонансной частоты и периода колебаний колебательного контура с катушкой и конденсатором можно воспользоваться программой:

electe.blogspot.com

Колебательный контур LC

Колебательный контур — электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

- Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию. - Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

- Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией . - Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U, потенциальная энергия его заряда составит. Если параллельно заряженному конденсатору подключить катушку индуктивности L, в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t1, которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t1 = . По истечении времени t1, когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны. Накопленная катушкой магнитная энергия в этот момент составит. В идеальном рассмотрении, при полном отсутствии потерь в контуре, EC будет равна EL. Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t2 = t1, он перезарядит конденсатор от нуля до максимального отрицательного значения (-U). Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t1 и t2 составят половину периода полного колебания в контуре. Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t3, сменив полярность полюсов.

В течении заключительного этапа колебания (t4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде. Время t1 + t2 + t3 + t4 составит период колебаний . Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности XL=2πfL равно реактивному сопротивлению ёмкости XC=1/(2πfC).

Расчёт частоты резонанса LC-контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Необходимо вписать значения и кликнуть мышкой в таблице. При переключении множителей автоматически происходит пересчёт результата.

Частота резонанса колебательного контура LC. ƒ = 1/(2π√(LC))

Расчёт ёмкости:

Ёмкость для колебательного контура LC C = 1/(4𲃲L)

Расчёт индуктивности:

Индуктивность для колебательного контура LC L = 1/(4𲃲C)

Похожие страницы с расчётами:

Рассчитать импеданс.

Рассчитать реактивное сопротивление. Рассчитать реактивную мощность и компенсацию.

Замечания и предложения принимаются и приветствуются!

tel-spb.ru

34.Условие и способы получения резонанса. Резонансная частота

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника ? может оказаться равной угловой частоте ?0, с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний ?0, возникающих в какой-либо физической системе, с частотой вынужденных колебаний ?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту ? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С — резонанс напряжений и при параллельном их соединении — резонанс токов. Угловая частота ?0, при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

35. Резонанс в последовательном колебательном контуре. Добротность, векторная диаграмма. Характеристическое сопротивление, затухание контура.

Резонанс напряжений – явление, при котором цепь содержащая активные и реактивные сопротивления, будет только активное сопротивление (XL - XC = 0). При этом ток в цепи совпадает по фазе с напряжением. Условие возникновение резонанса напряжений – равенство нулю реактивного сопротивления.

- характеристическое сопротивление контура.

Таким образом:

–резонансная частота

-резонансная для парралельного

При резонансе напряжений ток максимален, так как сопротивление минимально, а

и таким образом

Добротностью контура называется отношение модуля реактивной составляющей напряжения в цепи к модулю входного напряжения в момент резонанса.

Полосу частот вблизи резонанса, на границах которой ток снижается до величины принято называтьполосой пропускания резонансного тока.

Чем больше добротность, тем острее кривая и уже полоса пропускания

36. Резонанс (определение). Последовательный и параллельный колебательные контуры. Резонансные кривые в относительных единицах для последовательного колебательного контура.

резонанс напряжений в цепях переменного тока это такой процесс, при котором на отдельных элементах цепи возникает напряжение больше чем питающее. Такой процесс возникает в цепях, состоящих из последовательно соединённых емкости и индуктивности. В так называемом последовательном колебательном контуре.

Для наступления резонанса в цепи переменного тока необходимо чтобы выполнялись условия. Во-первых, реактивное сопротивление индуктивности должно быть равно реактивному сопротивления емкости. При этом активное сопротивление такого контура должно быть минимальным.

Рисунок 1 — последовательный колебательный контур

Во вторых собственная частота последовательного колебательного контура состоящего из индуктивности и емкости должна совпадать с частотой питающего напряжения. Тогда в цепи наступает резонанс напряжений. Энергия, накопленная в магнитном поле, полностью переходит в энергию электрического поля в конденсаторе и наоборот.

А для источника переменного напряжения такая цепь становится практически закороткой и в ней протекает максимально возможный ток. Ограниченный только активным сопротивлением контура. Поскольку реактивные сопротивления индуктивности и емкости на резонансной частоте становятся равные нулю и энергия в них не рассеивается. В отличии от активного сопротивления в котором по закону джоуля ленца выделяется тепло.

Рисунок 2 — Зависимость тока и полного реактивного сопротивления от частоты источника напряжения

При изменении частоты питающего напряжения или параметров контура резонанс исчезает. Напряжение на элементах цепи распределяется в соответствии с законом Ома. То есть падение напряжения на емкости и индуктивности будет равно току, умноженному на их реактивные сопротивления.

В случае резонанса напряжение на емкости или индуктивности будет в Q раз больше чем напряжение источника. Q это добротность контура величина обратная коэффициенту затухания колебаний в контуре. Таким образом, чем выше добротность контура, тем выше будет увеличение напряжения.

Резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы

studfiles.net

Как найти резонансную частоту

Инструкция

На активное сопротивление в контуре (включая паразитное) внимание не обращайте. Оно может потребоваться при решении других задач, где вычислить необходимо добротность контура и скорость затухания колебаний в нем. Частота же, а значит, и период, от него не зависят.

Исходные данные переведите в единицы системы СИ: емкость - в фарады, индуктивность - в генри. При этом удобно пользоваться калькулятором со степенным представлением чисел. Если индуктивность и емкость выражены в единицах системы СИ, частота и период после их вычисления получатся в единицах той же системы - соответственно, герцах и секундах.

Умножьте емкость на индуктивность. Из произведения извлеките квадратный корень. Результат умножьте на удвоенное число «пи», в итоге получится период. Соответствующая формула выглядит так:

T=2π√(LC), где T - период (с); π - число «пи»; L - индуктивность (Г); C - емкость (Ф).

При необходимости (если это требуется в задаче) вычислите также и частоту колебаний. Для этого найдите величину, обратную периоду, то есть поделите единицу на период:

f=1/T, где f - частота, Гц; T - период, с.

Переведите результат в те единицы, которые требуются по условию задачи. Например, период можно перевести в миллисекунды, микросекунды, а частоту - в килогерцы, мегагерцы, гигагерцы, и т.п.

Частота (а значит, и период) не зависит от того, является ли контур параллельным или последовательным. Но в обоих случаях на нее могут влиять емкости и индуктивности внешних цепей и даже расположенных рядом объектов. Важнейшее различие между параллельным и последовательным контурами состоит в том, что первый из них имеет на резонансной частоте максимальное сопротивление (в идеальных условиях равное бесконечности), а второй - минимальное (в идеальных условиях - равное активному сопротивлению). Оба контура при достаточной добротности способны, в зависимости от способа включения, выделять либо резонансную частоту, либо все частоты, кроме резонансной.

www.kakprosto.ru


Смотрите также