Как высчитывается площадь прямоугольника


Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.

Полезные калькуляторы Конвертер единиц площади | Конвертер единиц длины

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.

Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 = 1 са (сантиар)
Квадратный километр - 1 км2 = 1 000 000 м2
Гектар - 1 га = 10 000 м2
Ар (сотка) - 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 = 1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.

Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

calc.by

Площадь прямоугольника. Онлайн-калькулятор

Онлайн-калькулятор площади прямоугольника поможет вам точно и быстро рассчитать или проверить расчеты по нахождению площади любого прямоугольника. Обычно площадь прямоугольника можно рассчитать двумя способами: через две стороны прямоугольника или через его диагонали. При первом способе расчета введите значения длин сторон a и b. При втором – длину диагоналей и значение угла между ними в градусах или радианах. Помимо ответа калькулятор покажет решение.

Прямоугольник – это геометрическая фигура, представляющая собой четырехугольник, у которого все углы прямые (90° ). Диагонали прямоугольника равны между собой.

Как найти площадь прямоугольника?

Существует несколько способов найти площадь прямоугольника. Самый простой способ, если известны стороны прямоугольника, то достаточно их перемножить. Если стороны не известны, а имеется величины диагоналей прямоугольника и угла между ними, то нужно воспользоваться формулой, приведенной ниже:

1) через две стороны

a, b – стороны

2) через диагонали и угол

d – диагонали, α – угол между диагоналями.

calc.by

Площадь прямоугольника — найти площадь прямоугольника онлайн

Рассчитать площадь прямоугольника с подробным решением. Калькулятор находит площадь по формуле через длину и ширину прямоугольника. Основные способы и объяснение формул, по которым вы сможете самостоятельно решить свои задачи.

Онлайн-калькулятор

Вначале давайте разберемся с определением. У прямоугольника есть 4 стороны. Каждая сторона равна противоположной и параллельна ей. Здесь важно понимать, что все 4 стороны не могут быть равны, иначе получится квадрат. В прямоугольнике будут 2 одинаковые стороны одной длины и 2 одинаковые другой.

Все 4 угла, находящиеся внутри прямоугольника, — прямые. То есть каждый угол равен 90°.

Формула площади прямоугольника через его стороны

Чтобы найти площадь SSS прямоугольника, нужно перемножить две его стороны: сторону aaa умножаем на сторону bbb.

S=a⋅b.S = a \cdot b.S=a⋅b.

Пример

У нас есть прямоугольник ABCDABCDABCD. Одна его сторона ABABAB равна 555 см, вторая BCBCBC равна 333 см. Нам нужно найти его площадь SSS.

Решение:

Чтобы найти площадь SSS, нужно умножить сторону ABABAB на сторону BCBCBC и получаем: S=5⋅3S = 5 \cdot 3S=5⋅3.

Ответ: S=15S = 15S=15 см2.

Формула площади прямоугольника через диагонали

Площадь прямоугольника можно также рассчитать, зная длину диагоналей и острый угол между ними:

S=12d2sin⁡α.S = \frac {1}{2}d^2 \sin \alpha.S=21​d2sinα.

Помним, длины диагоналей в прямоугольнике равны и при пересечении делятся пополам.

Пример

Дан прямоугольник ABCDABCDABCD. Его диагональ ACACAC равна 888 см, а острый угол между диагоналями 30°30°30°. Найдите площадь фигуры.

Используем приведенную выше формулу и получаем: S=12⋅82⋅sin⁡30∘=12⋅64⋅12=644=16S = \frac{1}{2} \cdot 8^2 \cdot \sin 30^{\circ} = \frac{1}{2} \cdot 64 \cdot \frac{1}{2} = \frac{64}{4} = 16S=21​⋅82⋅sin30∘=21​⋅64⋅21​=464​=16

Ответ: S=16S = 16S=16 см2.

studwork.org

Площадь прямоугольника

Прямоугольник – это параллелограмм, у которого все углы равны 90°, а противоположные стороны попарно параллельны и равны. У прямоугольника есть несколько неопровержимых свойств, которые применяются в решении множества задач, в формулах площади прямоугольника и его периметра. Вот они:

  • Стороны прямоугольника являются его высотами;
  • Длины диагоналей равны между собой ;
  • Точка пересечения диагоналей делит их пополам;

Длина неизвестной стороны или диагонали прямоугольника вычисляется по формуле площади прямоугольного треугольника или по теореме Пифагора. Площадь прямоугольника можно найти двумя способами – по произведению его сторон или по формуле площади прямоугольника через диагональ. Первая и самая простая формула выглядит так:

Пример расчета площади прямоугольника по этой формуле очень прост. Зная две стороны, к примеру a =3 см, b = 5 см, мы легко высчитаем площадь прямоугольника: Получаем, что в таком прямоугольнике площадь будет равна 15 кв. см.

Иногда требуется применить формулу площади прямоугольника через диагонали. Для нее потребуется не только узнать длину диагоналей, но и угол между ними:

Рассмотрим пример расчета площади прямоугольника через диагонали. Пусть дан прямоугольник с диагональю d = 6 см и углом = 30°. Подставляем данные в уже известную формулу:

Итак, пример расчета площади прямоугольника через диагональ показал нам, что найти площадь таким образом, если задан угол, довольно просто. Рассмотрим еще одну интересную задачку, которая поможет нам немного размять мозги.

Задача: Дан квадрат. Его площадь равна 36 кв. см. Найдите периметр прямоугольника, у которого длина одной из сторон равна 9 см, а площадь такая же, как у заданного выше квадрата. Итак, у нас есть несколько условий. Для наглядности запишем их, чтобы увидеть все известные и неизвестные параметры: Стороны фигуры попарно параллельны и равны. Поэтому периметр фигуры равен удвоенной сумме длин сторон: Из формулы площади прямоугольника, которая равняется произведению двух сторон фигуры, найдем длину стороны b Отсюда: Подставляем известные данные и находим длину стороны b: Рассчитываем периметр фигуры: Вот так, зная несколько легких формул, можно вычислить периметр прямоугольника, зная его площадь.
Page 2

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом.

Формула площади сектора кольца, выраженная через внешний и внутренний радиусы

Пусть дана окружность радиуса R и окружности радиуса r. Причем R>r. Совместим центры этих окружностей. Возьмем на окружности с большим радиусом две произвольные точки. Проведем к ним радиусы, которые образуют угол α. Эти радиусы отсекут от окружностей некоторые дуги. Фигура, заключенная между этими дугами окружностей и радиусами, проведенными к концам этих дуг, и будет сектор кольца, у которого R является внешним радиусом, r -внутренним радиусом. Тогда площадь этой фигуры будет равна разницы между площадью сектора круга с большим радиусом и площадью сектора круга с меньшим радиусом.

Площадь сектора круга с радиусом r выражается формулой:

где l–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:

Площадь круга с радиусом R выражается формулой: где L–длина дуги равная Подставим выражение длины дуги в формулу площади сектора. Получим:

Тогда площадь кольца будет равна:

Таким образом, площадь сектора кольца равна произведению площади единичного сектора кольца, то есть сектору, соответствующему центральному углу с мерой равной единице на меру центрального угла, соответствующего данному сектору.

Формула имеет вид:

Пример расчета площади сектора кольца, если известны его радиусы. Найдите площадь сектора кольца, образованного углом 30° , если его внешний радиус равен 14, а внутренний – 8. Площадь кольца вычисляется по формуле:

Подставив значения из условия задачи, имеем:

Page 3

Чтобы найти объем конуса необходимо произвести дополнительные построения. Построим вписанную в конус правильную n-угольную пирамиду и опишем вокруг данного конуса правильную n-угольную пирамиду. Вписанная пирамида содержится в конусе. Из этого следует, что ее объем не больше объема конуса.

Описанная пирамида содержит конус, а это значит, что ее объем не меньше объема конуса.

Впишем в основание вписанной пирамиды окружность. Если радиус вписанного правильного n-угольника равен R, то радиус вписанной в него окружности будет равен: Объем вписанной пирамиды вычисляется по формуле:

где S – основание пирамиды. Площадь данного круга вычисляется по формуле: Площадь основания вписанной пирамиды не меньше площади круга, содержащегося в ней

Поэтому утверждение, что объем вписанной в конус пирамиды не меньше верно.

А следовательно, мы может утверждать, что объем конуса, содержащий эту пирамиду будет больше или равен V≥

Теперь опишем окружность вокруг основания описанной вокруг конуса пирамиды. Радиус этой окружности будет равен:

Площадь данного круга вычисляется по формуле: Основание описанной пирамиды содержится в круге описанном вокруг него. Поэтому площадь основания пирамиды не больше Поэтому утверждение,что объем описанной пирамиды не больше верно. А следовательно, мы может утверждать, что объем конуса, содержащий в эту пирамиду будет меньше или равен Два полученных неравенства равны при любом n. Если то Тогда из первого неравенства следует, что V≥ Из второго неравенства

Отсюда следует, что

Объем конуса равен одной трети произведения радиуса на высоту.

Пример расчета объема конуса Найти объем конуса, если его радиус основания равен 3 см, а образующая 5 см. Объем конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и радиус основания образуют прямоугольный треугольник. Воспользовавшись теоремой Пифагора имеем:

Отсюда:

Подставим значение радиуса и высоты в формулу объема конуса. Имеем:

Page 4

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Дополним данный усеченный конус до полного . Пусть его высота будет x . Если высота усеченного конуса – h , то высота отсеченного конуса будет – x-h . Высота усеченного конуса будет равна разности объема полного конуса с радиусом R1и высотой x и объема полного конуса с радиусом R2. и высотой x-h. Из подобия этих конусов получаем:

Выразим x: Тогда объем усеченного конуса можно выразить:

Применив формулу разницы кубов, имеем:

Таким образом, формула объема усеченной пирамиды имеет вид:

Пример расчета объема усеченного конуса Радиусы основания усеченного конуса равны 11 и 27 , образующая относится к высоте как 17:15 . Найдите объем усеченного конуса. Объем усеченного конуса вычисляется по формуле:

Для того, чтобы воспользоваться данной формулой необходимо найти высоту конуса. Образующая конуса, его высота и разница радиусов оснований образуют прямоугольный треугольник. Воспользовавшись теоремой Пифагора получаем: Так как образующая относится к высоте как 17:15, то L=17x, H=15x.

Тогда:

Тогда высота усеченного конуса будет равна:

Подставим значения в формулу объема усеченного конуса. Получим:

Page 5

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

Page 6

У большинства детей младшего школьного возраста хорошо развита механическая память, которая задействуется при выучивании правил. Но для отдельных детей, а особенно творческих личностей, зубрежка является невыносимой. Родители, думающие, что их чадо не способно освоить изучение таблицы умножения и поэтому в дальнейшем будет отставать в математике, заблуждаются. На самом деле к нему нужен совершенно другой, особый подход.

Читать далее

Ниже представлена таблица степеней от 2 до 10 натуральных чисел от 1 до 20. Читать далее

Таблица кубов натуральных чисел от 1 до 100 Читать далее

Таблица факториалов от 1 до 40 Читать далее

Page 7

При нахождении объема усеченного конуса целесообразней рассматривать разность объема полного конуса и объема отсеченного конуса. Читать далее

Чтобы найти объем конуса необходимо произвести дополнительные построения. Читать далее

Усеченный конус – это часть конуса, ограниченная между двумя параллельными основаниями перпендикулярными его оси симметрии. Читать далее

Пусть α– плоскость, точка S– точка, не лежащая в этой плоскости. Возьмем на плоскости произвольный круг с радиусом R. Читать далее

Сектор кругового кольца – это плоская фигура, которая представляет собой часть плоскости между дугами двух окружностей с общим центром и разным радиусами, ограниченных двумя радиальными линиями, которые проведены к концам дуги с большим радиусом. Читать далее

Кольцо – это плоская геометрическая фигура, которая представляет собой часть плоскости между двумя окружностями с общим центром, но имеющими разный радиус. Читать далее

Очень часто на практике приходится сталкиваться с задачей нахождения длины дуги. Читать далее

Шестиугольной пирамидой называется многогранник, в основании которого лежит правильный шестиугольник, а боковые грани образуются одинаковыми равнобедренными треугольниками. Читать далее

Многогранник, в основании которого лежит правильный треугольник, а остальные грани представлены равнобедренными треугольниками называется треугольной пирамидой. Читать далее

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками. Читать далее

2mb.ru


Смотрите также