Лазерная резка металла


Технология лазерной резки металла – оборудование, особенности, видео

Лазерная резка, или LBC (Laser Beam Cutting), как она обозначается во всем мире, – это процесс, при котором материал в зоне реза нагревается, а затем разрушается при помощи лазера.

Промышленная резка металла с помощью лазера

Сущность лазерной резки металла

Лазерная резка металла, как понятно из ее названия, выполняется при помощи луча лазера, получаемого при помощи специальной установки. Свойства такого луча позволяют фокусировать его на поверхности небольшой площади, создавая при этом энергию, характеризующуюся высокой плотностью. Это приводит к тому, что любой материал начинает активно разрушаться (плавиться, сгорать, испаряться и т.д.).

Станок лазерной резки металла, к примеру, позволяет концентрировать на поверхности обрабатываемого изделия энергию, плотность которой составляет 108 Ватт на один квадратный сантиметр. Для того чтобы понять, как удается добиться такого эффекта, необходимо разобраться, какими свойствами обладает лазерный луч:

  • Лазерный луч, в отличие от световых волн, характеризуется постоянством длины и частоты волны (монохроматичность), что и позволяет легко фокусировать его на любой поверхности при помощи обычных оптических линз.
  • Исключительно высокая направленность лазерного луча и небольшой угол его расходимости. Благодаря такому свойству на оборудовании для лазерной резки можно получить луч, отличающийся высокой фокусировкой.
  • Лазерный луч обладает еще одним очень важным свойством – когерентностью. Это значит, что множество волновых процессов, протекающих в таком луче, полностью согласованы и находятся в резонансе друг с другом, что в разы увеличивает суммарную мощность излучения.

Процессы, происходящие при резке металла с использованием лазера, хорошо заметны на приведенных в статье видео. При воздействии луча на поверхность металла происходит быстрое нагревание и последующее расплавление подвергаемой обработке площади.

Быстрому распространению зоны плавления вглубь обрабатываемого изделия способствуют несколько факторов, в том числе и теплопроводность самого материала. Дальнейшее воздействие лазерного луча на поверхность изделия приводит к тому, что температура в зоне контакта доходит до точки кипения и обрабатываемый материал начинает испаряться.

Процесс лазерной резки в схематичной форме

Лазерную резку металла может выполняться двумя способами:

  • плавлением металла;
  • испарением обрабатываемого металла.

Для того чтобы выполнить резку металла методом испарения, требуется большая мощность оборудования и, как следствие, значительные энергозатраты, что не всегда целесообразно с экономической точки зрения. Ограничивают использование такого метода и строгие требования к толщине обрабатываемых изделий. Именно поэтому данный метод используют только для резки тонкостенных деталей.

Значительно большее распространение получила лазерная резка металла методом плавления. В последнее время лазерную резку методом плавления все чаще проводят с использованием газов (кислород, азот, воздух, инертные газы), которые с помощью специальных установок вдувают в зону реза (видео этого процесса можно легко найти в Сети).

Такая технология позволяет снизить энергозатраты, повысить скорость работы, использовать оборудование небольшой мощности для резки металла большой толщины. Конечно, это нельзя считать лазерной резкой в чистом виде, правильнее будет называть его газолазерной технологией.

Лазерная резка стали 10мм

Использование кислорода в качестве вспомогательного газа при выполнении лазерной резки позволяет одновременно решить такие важные задачи, как:

  • активизация процесса окисления металла (это позволяет снизить его отражающую способность);
  • повышение тепловой мощности в зоне реза (поскольку металл в среде кислорода горит более активно);
  • выдувание из зоны реза мелких частиц металла и продуктов сгорания кислородом, подаваемым под определенным давлением (это облегчает приток газа в зону обработки).

Преимущества и недостатки лазерной резки

Лазерная резка металлических изделий имеет целый ряд весомых преимуществ по сравнению с другими способами резки. Из многочисленных достоинств данной технологии стоит обязательно отметить следующие.

  • Диапазон толщины изделий, которые можно успешно подвергать резке, достаточно широк: сталь – от 0,2 до 20 мм, медь и латунь – от 0,2 до 15 мм, сплавы на основе алюминия – от 0,2 до 20 мм, нержавеющая сталь – до 50 мм.
  • При использовании лазерных аппаратов исключается необходимость механического контакта с обрабатываемой деталью. Это позволяет обрабатывать таким методом резки легко деформирующиеся и хрупкие детали, не переживая за то, что они будут повреждены.
  • Получить при помощи лазерной резки изделие требуемой конфигурации просто, для этого достаточно загрузить в блок управления лазерного аппарата чертеж, выполненный в специальной программе. Все остальное с минимальной степенью погрешности (точность до 0,1 мм) выполнит оборудование, оснащенное компьютерной системой управления.
  • Аппараты для выполнения лазерной резки способны с большой скоростью обрабатывать тонкие листы из стали, а также изделия из твердых сплавов.
  • Лазерная резка металла способна полностью заменить дорогостоящие технологические операции литья и штамповки, что целесообразно в тех случаях, когда необходимо изготовить небольшие партии продукции.
  • Можно значительно снизить себестоимость продукции, что обеспечивается за счет более высокой скорости и производительности процесса резки, снижения объема отходов, отсутствия необходимости в дальнейшей механической обработке.

Резка фанеры лазером

Наряду с высокой мощностью устройства для лазерной резки обладают исключительной универсальностью, что дает возможность решать с их помощью задачи любой степени сложности. В то же время для лазерной резки металла характерны и некоторые недостатки.

  • Из-за высокой мощности и значительного энергопотребления оборудования для лазерной резки себестоимость изделий, изготовленных с его применением, выше, чем при их производстве методом штамповки. Однако это можно отнести лишь к тем ситуациям, когда в себестоимость штампованной детали не включена стоимость изготовления технологической оснастки.
  • Существуют определенные ограничения по толщине детали, подвергаемой резке.

Виды оборудования для лазерной резки

Оборудование для лазерной резки металла делится на три основных типа.

Газовые установки для лазерной резки

Газы в таких установках, использующиеся в качестве рабочего тела, могут прокачиваться по продольной или поперечной схеме. Принцип работы таких лазеров заключается в возбуждении атомов газа под действием электрического разряда, вследствие чего частицы начинают излучать монохроматический свет. Большое распространение в современной промышленности нашли щелевидные установки, работающие на углекислом газе. Они достаточно компактные, при этом мощные и отличаются простотой в эксплуатации (в Интернете достаточно много видео, на которых показана работа таких установок).

Принцип действия газового лазера

Установки твердотельного типа

Конструкция такого оборудования состоит из двух основных элементов: лампы накачки и рабочего тела, в качестве которого чаще всего используется стержень из искусственного рубина. В состав последнего также включен неодим иттриевого граната. Лампа накачки в таких аппаратах необходима для того, чтобы передать на рабочее тело требуемое излучение. Чаще всего такие установки для лазерной резки работают в импульсном режиме, но есть и модели, функционирующие непрерывно.

Принцип действия рубинового лазера

Газодинамическое оборудование

В газодинамических установках рабочий газ предварительно нагревается до 2–3 тысяч градусов, затем на высокой скорости (выше скорости звука) пропускается через специальное сопло, а после этого охлаждается. Такое оборудование является очень дорогостоящим, как и сам процесс формирования лазерного луча, поэтому его использование очень ограничено.

Если посмотреть видео работы лазерной установки, то очень сложно определить, к какой группе она относится. Для этого необходимо получить представление об устройстве такого оборудования.

Любое оборудование для выполнения лазерной резки, к какой бы группе оно ни принадлежало, содержит следующие элементы:

  • систему, отвечающую за передачу и образование газа и излучения (в состав такой системы входят сопло, устройство для подачи газа, юстировочный лазер, поворотные зеркала, оптические элементы и др.);
  • излучатель, оснащенный зеркалами резонатора, содержащий активную среду, устройства для накачки и обеспечения модуляции, если она необходима;
  • систему управления всеми параметрами работы оборудования и осуществления контроля за их соблюдением;
  • узел, обеспечивающий перемещение обрабатываемого изделия и лазерного луча.

met-all.org

Основы технологии лазерной резки металла

Из школьного курса элементарной физики вы знаете о сильном тепловом воздействии сфокусированного света. Познавательный трюк с увеличительным стеклом ясно показывает возможности преломленного потока солнечного луча.

Принципом действия работы лазера может служить его перевод с английского: усиление света вынужденным излучением. По-простому — это световое излучение, вызванное атакой фотонов на рабочую среду с усилением за счет ответной реакции. Световой поток через систему оптических призм и зеркал фокусируется в узконаправленный луч импульсной или непрерывной модуляции. Мощность и интенсивность лазера зависит от используемого активатора и сложности резонирующих систем.

В качестве первичного активного вещества используют все возможные агрегатные состояния: твердое, газообразное, жидкое и плазменное. Важнейшим критерием является способность к возбуждению и отдаче свободных квантов-фотонов. Накачка первичных световых атомов производится разными способами. Это может быть сфокусированное солнечное излучение, специальные лампы, другие лазеры, электрическое воздействие или химические процессы. Для увеличения силы потока делают многоуровневые атакующие каскады. В основе резонаторов применяют плоскопараллельные и сферические зеркала или их комбинации. Главный параметр хорошего прибора — устойчивое сохранение светового луча и его точная фокусировка.

Первый лазер был сделан на рубине в 1960 году, он работал в инфракрасном диапазоне и являлся началом эры световых помощников человека. История развития прикладной квантовой науки шла по пути усиления первоначальных систем накачки и совершенствования оптических резонаторов для достижения мощного и управляемого луча. Выискивались новые рабочие среды, были испробованы и получили путевку в жизнь лазерные установки на красителях, на свободных электронах, химические модели и полупроводниковые исполнения.

Производственное использование лазера

Лазер называют самым красочным и одним из важнейших изобретений XX века. Многие годы никто не понимал его практического применения, прибор называли устройством, которое само ищет задачи для решения. Теперь лазерные аппараты лечат людей, исследуют звезды и применятся для развлекательных мероприятий.

Машиностроительные производства давно начали использовать резку металла лазером. Пионерами выступили судостроительные верфи, авиационные заводы и автомобильные гиганты, искавшие передовые методы работы для увеличения производительности труда. Возрастающая конкуренция стимулировала появление инновационных обрабатывающих центров с принципиально новыми системами влияния на рабочий процесс.

К настоящему времени на промышленных предприятиях лазерная резка металла представлена следующими видами установок:

  • твердотельные — основанные на кристаллических драгоценных камнях или соединениях редкоземельных элементов, для накачки фотонов используется импульсные лампы или лазерные диоды;
  • газовые — в качестве активаторов применяются смеси инертных газов с источником возбуждения в виде электрических разрядов или направленной химической реакции;
  • волоконные — активная среда и резонатор сделаны целиком из оптического волокна или скомбинированы с другими конструктивными элементами.

Следующее видео представляет волоконный лазерный станок.

Для работы с цветными металлами и антикоррозионными сталями, имеющими высокую отражающую способность, прикладными исследовательскими институтами разработаны специальные модели традиционных лазеров с резонатором из оптико-волоконной трубки. Световой луч в таких установках более сфокусированный и концентрированный и не рассеивается о зеркальную поверхность алюминиевых, титановых или нержавеющих заготовок.

Широко распространенные газовые СО₂-лазеры работают на рабочей смеси углекислого газа, азота и гелия, зеркала резонатора покрыты серебряным или золотым напылением для увеличения отражающей способности.

Технология лазерной резки металлов постоянно совершенствуется: пробуются новые типы установок, усложняются системы управления процессом, применяются компьютерные комплексы для контроля режимов обработки. Основной упор делается на увеличение точности, чистоты реза и производительности.

Особенности технологического процесса

В результате воздействия светового луча материал заготовки проходит несколько промежуточных изменений для превращения в обработанную деталь:

  • первая стадия — воздействие лазера на металл в точке начала реза вызывает нагревание вещества до температуры плавления и появлению усадочной раковины;
  • вторая стадия — энергия излучения приводит к кипению и испарению металла;
  • третья стадия — при проплавлении заготовки на полную глубину начинается поступательное движение рабочего органа в соответствии с заданной траекторией.

В действительности, процесс испарения металла наблюдается только у тонких заготовок, при средней и большой толщине реза удаление остатков вещества из рабочей зоны производится с помощью струи вспомогательного газа (азот, кислород, воздушная смесь или инертные газы).

Такие установки, работа которой представлена на видео, называют газолазерными резаками.

Активный кислород, подаваемый в зону резания не только выводит продукты плавления металла и охлаждает поверхность среза, но и способствует поддержанию температуры и ускоряет режимы обработки. При лазерной резке не происходит деформации заготовки, следовательно, отсутствуют затраты материала на припуск линейных размеров и необходимость в дополнительных чистовых операциях.

Сравнительные характеристики лазерной и плазменной резки приведены

Современные лазерные комплексы

Мировая станочная индустрия идет в ногу со временем и предлагает своим потребителям самое разнообразное оборудование для лазерной резки металла. Многокоординатные аппараты призваны заменить шумные и низко производительные механические резаки. Мощность лазера зависит от специфики производства и экономического обоснования выбранного агрегата.

Новое поколение прецизионных обрабатывающих станков с ЧПУ позволяют проводить обработку материалов с точностью до 0,005 мм. Площадь обработки некоторых моделей лазерных установок достигает нескольких квадратных метров. Большим достоинством является минимизация человеческого фактора, заключающаяся в высокой автоматизации производственного процесса.

Геометрия детали задается в программный блок, осуществляющий управление лазером и рабочим столом с заготовкой. Системы настройки фокуса автоматически выбирают оптимальное расстояние для эффективного резания. Специальные теплообменники регулируют температуру лазерной установки, выдавая оператору контрольные данные текущего состояния инструмента.

Лазерный станок оснащается клапанными механизмами для подключения газобаллонного оборудования, чтобы обеспечить подачу вспомогательных газов в рабочую зону. Система дымоулавливания призвана оптимизировать расходы на вытяжную вентиляцию, включая её непосредственно в момент обработки. Область обработки полностью экранируется защитным кожухом для безопасности обслуживающего персонала.

Лазерная резка листового металла на современном оборудовании превращается в легкий процесс задания числовых параметров и получения на выходе готовой детали. Производительность оборудования напрямую зависит от параметров станочного комплекса и квалификации оператора, создающего программный код. Технология лазерной резки металлов гармонично вписывается в концепцию роботизированного производства, призванного полностью освободить человека от тяжелого труда.

Производители предлагают различные типы лазерных станков: универсальные и специализированные. Стоимость первых на порядок больше, но они позволяют производить несколько операций и выпускать детали более сложной формы. Большое количество рыночных предложений дает возможность выбора для заинтересованных потребителей.

Преимущества и недостатки

Специалисты машиностроительных предприятий понимают перспективы использования данной технологии для получения точных деталей с хорошей шероховатостью. Область применения обширна: от простого раскроя листового металлопроката до получения сложных кузовных деталей автомобилей. Явные плюсы лазерной резки металлов сводятся к нескольким резюмирующим аспектам:

  • высокое качество обработанной поверхности;
  • экономия материала;
  • способность работы с хрупкими материалами и тонкими заготовками;
  • возможность получения деталей сложной конфигурации.

Среди минусов: высокая стоимость оборудования и расходных материалов.

Лазерная резка стали и цветных металлов пользуется большим рыночным спросом. Способность быстро выдавать чистовые детали нестандартной формы привлекает в профильные предприятия заказчиков малых партий разнообразных изделий. Лазерные технологии активно используются в декоративном творчестве при изготовлении дизайнерских украшений и оригинальных сувениров.

Решение о применении лазерной обработки должно приниматься с учетом расчета окупаемости оборудования и величине эксплуатационных расходов. В настоящее время такие установки могут себе позволить, в основном, крупные предприятия с большим производственным циклом. С развитием технологии будут снижаться стоимость станков и количество потребляемой энергии, поэтому в будущем лазерные аппараты вытеснят своих конкурентов из сферы резки любых материалов.

wikimetall.ru

Оборудование для лазерной резки металла – современная обработка материалов

Лазерная резка, так же как и плазменная или газовая, является немеханическим способом раскроя металла, основанном на термическом воздействии. Лазерный луч, испускаемый специальным оборудованием, направляется и концентрируется на заготовке, достигая размеров площади контакта всего в несколько микрон. При этом кристаллическая решетка разрезаемого материала разогревается до температуры плавления.

В то же время, площадь луча настолько мала, что вся заготовка во время обработки остается практически холодной, а линия реза отличается минимальной погрешностью в десятые доли миллиметра. В месте резки металл плавится и может одновременно выкипать (испаряться). Расстояние между поверхностью заготовки и рабочим органом оборудования, испускающим лазерный луч, должно быть не более нескольких сантиметров. Лазером можно выполнять точные, аккуратные разрезы металлических заготовок небольшой толщины.

Филигранность обработки настолько велика, что вышедшая из лазерной установки деталь обычно не нуждается в какой-либо завершающей обработке и может сразу использоваться или передаваться на последующий этап технологического процесса. Лазерным лучом можно не только резать металл, но и фрезеровать, делать впадины, углубления заданного размера и многое другое. Только внутреннюю резьбу выполнить невозможно. Аппарат лазерной резки применяют и для гравировки. Процесс не требует использования сложного оборудования, мощность лазера не должна быть большой.

Лазерная резка считается самой качественной и современной среди всех остальных вариантов раскроя металла. Этот новый способ позволяет выполнить разрез по заданным критериям. Лазером можно обрабатывать любые металлы, независимо от их теплопроводности.

Концентрация энергии, которую обеспечивает луч, настолько высока, что металл в месте резки плавится. При этом область термического воздействия настолько мала, что минимальна и деформация изготовленной детали. Благодаря этому лазерную резку возможно использовать в обработке нежестких металлов.

Преимущества резки металлов лазером:

  1. Заготовка не подвергается механическому воздействию – можно резать легкодеформируемые и хрупкие материалы.
  2. Возможность работы с твердыми сплавами.
  3. Высокая точность реза и идеально ровные края кромки, без заусениц, наплывов и иных дефектов.
  4. Отсутствие потребности в последующей обработке изготовленных деталей.
  5. Возможность вырезать детали любой формы, даже самой сложной.
  6. Легкость управления лазерным оборудованием – достаточно в какой-либо чертежной программе подготовить рисунок будущего изделия и перенести его в компьютер установки для резки.
  7. Высокая производительность (примерно в 10 раз быстрее, чем газовой горелкой).
  8. Высокоскоростная обработка тонколистового проката.
  9. Детали на листе металла можно разместить максимально компактно – высокая экономичность расхода материала.
  10. Экономическая эффективность при изготовлении малых партий деталей, для которых делать формы для прессования или литья нецелесообразно.

Недостатки:

  1. Высокая стоимость оборудования.
  2. Низкая эффективность при работе со сплавами и металлами, обладающими высокими отражающими свойствами (к примеру, алюминий, нержавеющая сталь).
  3. Максимальная толщина металла 20 мм.

Оборудование для лазерной резки металла, как правило, состоит из ниже перечисленных основных узлов:

  • излучателя;
  • системы транспортировки и формирования излучения;
  • системы формирования газа и его транспортировки;
  • координатного устройства;
  • системы автоматизированного управления (САУ).

Излучатель генерирует лазерный пучок с требуемыми для резки, оптическими, мощностными и пространственно-временными характеристиками. Он состоит из:

  • системы накачки;
  • активного элемента;
  • резонатора;
  • устройства модуляции лазерного излучения (при необходимости).

В качестве излучателя в оборудовании для обработки металла используются газовые и твердотельные лазеры, функционирующие в непрерывном и импульсном режимах. Система транспортировки и формирования излучения передает, фокусирует и направляет пучок от излучателя на деталь, подвергаемую резке. Состав системы:

  • юстировочный лазер;
  • оптические объективы (трансформаторы);
  • оптический затвор;
  • устройство изменения плоскости поляризации;
  • поворотные зеркала;
  • система фокусировки;
  • система стабилизации фокальной плоскости и величины зазора до детали.

Система формирования газа и его транспортировки подготавливает состав требуемых параметров и подает его через сопло в зону реза. Координатное устройство обеспечивает относительное перемещение детали и лазерного луча в пространстве. Включает в себя привод, двигатели, исполнительные механизмы. САУ предназначена для управления и контроля параметрами лазера, формирования и передачи команд на предусмотренные исполнительные модули систем формирования и транспортировки излучения и газа, а также координатного устройства. САУ состоит из:

  • датчиков параметров функционирования лазера (давления, состава рабочей смеси, температуры и других);
  • датчиков рабочих параметров излучения (стабильности оси направленности, расходимости, мощности и других);
  • систем управления затвором и адаптивной оптикой;
  • системы управления работой координатного устройства.

Твердотельные лазерные установки для резки металла конструктивно более просты и, в тоже время, менее мощные, чем газовые. Величина этой характеристики для них составляет в среднем 1–6 кВт. Сердце излучателя твердотельного лазера – стержень (активный элемент) из алюмоиттриевого граната, рубина или неодимового стекла. Стержень непрерывно подвергается накачке (возбуждению) световым потоком от специальных мощных ламп. Система отражателей фокусирует лазерное излучение, резонатор его усиливает, луч передается через систему призм к головке, где происходит его окончательное формирование и подача на заготовку. Управление всеми узлами оборудования происходит автоматически по заложенным в память станка программам.

В газовых лазерах активным элементом является углекислый газ, гелий или азот, закаченные в газоразрядную камеру. Возбуждение газа производится непрерывными электрическими импульсами высокой частоты. Такая конструкция позволяет при сравнительно небольших габаритах установки получать мощности 20 кВт и более, что необходимо для резки сверхпрочных сплавов.

Лазерная головка для резки металла, куда передается луч, обеспечивает его оптимальную стабильность при раскрое и резке, а также неизменность необходимого фокусного расстояния (даже при неровной поверхности металла). Заменой линзы головки можно менять толщину обрабатываемого материала (не на всех установках). Головка оснащена концентрическим соплом, через которое под давлением подается газ, выдувающий расплавленный материал из разреза и одновременно защищающий от продуктов обработки линзу. В области резки может быть предусмотрено дымоулавливание.

В случае обдува азотом луч расплавляет, а струя газа удаляет расплавленный металл из разреза. Азот используют, когда нежелательно окисление разрезаемого материала. Например, если подавать кислород при обработке нержавеющей стали, то ее сопротивляемость коррозии существенно понизится (для обработки нержавейки пригоден только чистейший азот). Резка алюминиевых деталей в кислороде сопровождается образованием неровных, с заусенцами срезов. При обработке в азоте материал только плавится, но не испаряется и не горит. Температура резки ниже, чем с кислородом, но и меньше скорость работы. Фокус луча обычно должен находиться у противоположной от источника излучения стороны листа.

При использовании кислорода температура резки выше, чем с другими газами. Как следствие, увеличивается скорость обработки и возможная толщина листа металла, который при некоторых условиях частично испаряется. Все это является следствием того, что кислород, попадая на поверхность раскаленного лазерным лучом металла, вступает с последним в реакцию окисления, которая сопровождается выделением тепла. Скорость резки тем выше, чем чище кислород. Для лазерной резки могут использоваться и другие газы – выбор зависит от вида и толщины металла, предполагаемой последующей обработки.

tutmet.ru

Описание и применение лазерной резки металла

Лазерная резка приобретает все большую популярность ввиду того, что позволяет автоматизировать весь цикл обработки и получить изделие высокого качества. Технология разделки металла с помощью лазера делает возможным производство высокоточных деталей в полностью автономном режиме, исключающем ручной труд.

Технология лазерной резки металла

Лазерная резка и гравировка относятся к немеханическим способам обработки, равно как и плазменный метод. Они используют термическое воздействие, при котором сильно нагревается линия разреза, а металл плавится в нужном месте. Традиционным механическим способом обработки, в основе которого лежит разница твердости режущего инструмента и заготовки, считается алмазная резка металла. Нагрева в месте разреза не происходит. Хорошей точности и чистоты реза этот способ не дает.

Режущим инструментом в лазерной технологии является луч, который испускается с помощью специальной установки. Он фокусируется на участке с крайне небольшой площадью (не более 0,5 мм), создавая сгусток энергии высокой плотности. В точке фокусировки металл начинает достаточно быстро разрушаться (испаряться, гореть, плавиться).

Лазерному лучу помогают производить такой эффект следующие характеристики:

  1. Монохроматичность. Неизменность частоты и длины волны, позволяющая лучу при помощи простых оптических линз легко фиксироваться на любой поверхности.
  2. Направленность. Имея малый угол расходимости, луч хорошо концентрируется на нужном участке.
  3. Когерентность. Проходящие в луче волновые процессы колеблются согласованно и вызывают резонанс, который во много раз усиливает мощность излучения.

Дальнейшее воздействие вызывает испарение материала, т. к. температура в контактной зоне достигает точки кипения. Теплопроводность металла способствует перемещению пятна плавления вглубь разрезаемой заготовки.

Выделяют 2 механизма резки лазером: плавлением и испарением. Применение второго метода возможно только на тонком металле. К тому же большая мощность установки потребует соответствующих энергозатрат, что не всегда экономически оправданно. Вариант резки плавлением получил гораздо более широкое распространение, т. к. затраты энергии намного ниже. При способе обработки методом плавления используется вспомогательный газ (аргон, азот, гелий или воздух), вдуваемый в зону реза специальными установками.

Кислород, используемый в качестве вспомогательного газа, выполняет следующие важные задачи:

  • выдувает из области резки капли расплавленного металла и отходы горения, обеспечивая поступление газа в режущую зону;
  • активизирует окислительные процессы в металле, тем самым снижая его отражающие качества;
  • при поступлении кислорода металл горит интенсивнее, дополнительно выделяющаяся теплота увеличивает лазерное воздействие.

Алюминий

Лазерная резка алюминия обладает некоторыми особенностями, которые обуславливаются свойствами самого металла. Работать с алюминием сложнее, чем с другими материалами. Благодаря своим оптическим и теплофизическим характеристикам металл имеет высокую отражающую способность и поглощает лазерное излучение плохо.

Для резки алюминия потребуется мощность лазерного излучения гораздо большая (в 2-3 раза), чем для разделки углеродистых сталей. Это необходимо из-за высоких коэффициентов теплопроводности, отражения излучения и температуры плавления образовавшихся тугоплавких оксидов. Приходится использовать для обработки металла оборудование, обладающее более мощной режущей способностью.

Рекомендуется разрезать металл на невысоких скоростях обработки, т. к. это позволит предотвратить образование повреждения поверхности и добиться лучшего качества работы. Резка заготовок с малыми толщинами должна производиться в импульсном режиме работы устройства, благодаря этому уменьшается область нагрева поверхности в зоне резания и снижается риск деформации детали.

С толстым металлом советуют работать в микроплазменном режиме. Плазма образуется под действием паров легко ионизируемых элементов (цинк, магний и др.), она нагревает металл до температуры плавления с минимальными энергетическими затратами.

Вспомогательным газом чаще является азот, он поступает в область резания под давлением более 10 атм. Плоскость реза имеет немного шероховатую и пористую структуру, на нижней кромке наблюдается небольшое количество легкоудаляющегося грата (излишков металла). С ростом толщины заготовки понижается качество реза. Процесс показан на видео:

Нержавейка

Самой сложной признается лазерная резка нержавейки. Этот материал обладает большой стойкостью к разрушению, поэтому другим видам обработки он плохо поддается. Часто только лазерный метод бывает единственно возможным способом резки листового материала, т. к. при высоких температурах алюминий окисляется, а на поверхности образуются холодные трещины. Крайне затруднительна и неэффективна бывает механическая резка металла.

Сложности обработки материала обусловлены следующими качествами нержавеющих сталей:

  • наличие в составе большого количества легирующих присадок способно привести к зашлаковыванию поверхности реза;
  • затрудняется подвод лазерного луча к режущей зоне из-за формирования тугоплавких оксидов, вследствие чего расход энергии увеличивается;
  • для сталей высокохромистых и хромоникелевых характерна низкая текучесть, что сильно осложняет процесс резания.

При таком способе резки нержавейки применяется хорошо очищенный азот, который поступает под давлением до 20 атм. Когда резке подвергаются толстые заготовки, пятно луча заглубляется в материал для обеспечения хорошего доступа газа. При этом входное отверстие будет иметь больший диаметр, и поступление азота в область расплава возрастает.

Медь

Лазерная резка меди сильно осложняется достаточно высокой теплопроводностью металла и большим коэффициентом теплоемкости, что накладывает некоторые ограничения на применяемое оборудование. Обработка этого металла лазером должна производиться на малых скоростях с наименьшим размером пятна контакта и при больших значениях мощности излучения.

Оптимальными для резания являются медные листы не более 0,5 см толщиной. Сложный технологический процесс не позволяет нормально работать с толстыми медными заготовками. Возможно только простое раскраивание. Резка будет экономически невыгодной из-за необходимости применения оборудования чрезмерно большой мощности.

Преимущества и недостатки

Резка с помощью лазера имеет ряд неоспоримых преимуществ при сопоставлении с другими видами обработки. Выделяют следующие положительные характеристики:

  • приемлемый диапазон обрабатываемых толщин: лазерная резка алюминия — 0,2-2 см, нержавейка — резка листов толщиной до 1,2 см, углеродистая сталь — 0,5-2 см, латунь и медь — 0,2-1,5 см;
  • ширина реза от 0,1 до 1 мм;
  • исключение непосредственного контакта режущего элемента с поверхностью обрабатываемой заготовки, что позволяет работать с хрупкими и ломкими материалами;
  • отсутствие потребности в дополнительной финишной обработке;
  • высокая производительность (особенно при сопоставлении с резкой металла кислородом);
  • простота и легкость управления оборудованием на производстве: чертеж изделия, выполненный в специальной графической программе, просто загружается в блок управления;
  • высокая скорость разделки тонколистового проката;
  • экономный расход материала за счет компактного расположения деталей на листе раскроя;
  • резка металла под углом и в различных направлениях;
  • изготовление изделий сложных форм;
  • экономически выгодное производство изделий малыми партиями, когда операции штамповки и литья нецелесообразны;
  • высокая точность разреза с ровными краями без наплывов и заусенцев, позволяющая передавать детали от места резки сразу на участок сварки металлов.

Надо отметить и отрицательные стороны резки лазером:

  • высокая стоимость;
  • низкая продуктивность при резке бронзы, алюминия, легированной стали и латуни;
  • невозможность разделывать заготовки любой толщины;
  • вследствие подкаливания материала в зоне пятна резки возможны трудности последовательного проведения лазерной резки и гибки металла.

Оборудование

Находят применение несколько вариантов оборудования:

  1. Твердотелое оборудование. Рабочим элементом является кристалл рубина (алюмоиттриевый гранат, неодимовое стекло). Угол подачи потока света на искусственный рубин будет иметь четкое значение. Установка относительно небольшой мощности применяется как для гравировки металла, так и для резки цветных металлов. Слесарное дело в небольшом цехе получит хорошее подспорье. Небольшие станки возможно использовать для работы своими руками.
  2. Газовая установка. В оборудовании для лазерной резки металла газ является активным элементом, который заряжается при прохождении через электрическое поле. Затем газы начинают выпускать монохроматическое световое излучение. Большую востребованность имеют щелевидные модели, использующие углекислый газ. Подобные установки для резки металла мощные и простые в работе, но при этом небольших размеров.
  3. Газодинамическая установка. На устройствах этого типа лазерная резка металла будет достаточно дорогой процедурой, т. к. оборудование мощное и сложное. Газ (чаще углекислый) разогревается до чрезвычайно высоких температур (2000-3000°C), затем при прохождении через узкое сопло он расширяется. При последующем охлаждении излучается энергия, которая идет на формирование луча. Качество получаемых изделий настолько хорошее, что их можно сразу направлять на гибочный участок.

Станок для лазерной резки

Все станки, на которых осуществляется лазерная резка и гравировка, содержат несколько необходимых компонентов:

  1. Излучатель. Порождает пучки лазерных лучей.
  2. Система перемещения лазерного излучения и система формирования луча. Перемещает лазерные пучки, формирует 1 большой луч и, пользуясь системой фокусировки, направляет в нужное место.
  3. Система образования и транспортировки газа. Готовит необходимый состав и нужное количество рабочего газа, а затем через сопло доставляет его к месту резки.
  4. Устройство координации. Перемещает в пространстве луч и обрабатываемый объект.
  5. Система автоматического управления. Проверяет и регулирует работу всего оборудования, командует координатным устройством, системой транспортировки и формирования луча и газа.

Лазерная резка алюминия производится исключительно на станках с ЧПУ, все настройки и операции происходят автоматически в соответствии с программным обеспечением. Это позволяет получить изделия лучшего качества, чем при разделке пилой, электродом или отрезным алмазным диском.

Предназначение лазерного оборудования

Технологические устройства для резки по металлу лазером характеризуются несколькими параметрами:

  • составом газовой струи и ее давлением;
  • типом обрабатываемого материала;
  • мощностью излучения и его интенсивностью.

Существуют специализированные станки для резки труб, а также для работ с мягкими и пластичными металлами. Технология лазерной резки приобретает все более широкое распространение, т. к. дает возможность существенно снизить трудоемкость технологического процесса и свести использование ручного труда к минимуму. Для изготовления всевозможных металлических деталей и декоративных элементов из листов материала разной толщины все чаще используется лазерная резка металла.

alsver.ru


Смотрите также