Полимерный композитный материал


Полимерные композиционные материалы

Среди большинства материалов наиболее популярными и широко известными являются полимерные композиционные материалы (ПКМ). Они активно применяются практически в каждой сфере человеческой деятельности. Именно данные материалы являются основным компонентом для изготовления различных изделий, применяемых с абсолютно разными целями, начиная от удочек и корпусов лодок, и заканчивая баллонами для хранения и транспортировки горючих веществ, а также лопастей винтов вертолетов. Такая широкая популярность ПКМ связана с возможностью решения технологических задач любой сложности, связанных с получением композитов, имеющих определенные свойства, благодаря развитию полимерной химии и методов изучения структуры и морфологии полимерных матриц, которые используются при производстве ПКМ. Т.е. использование ПКМ делает конструктивный материал или само изделие в разы легче, что и является главной причиной того, что данные материалы практически незаменимы.

Итак, что же представляют собой полимерные композиционные материалы. Стоит сказать, что композитом называется абсолютно любой материал, имеющий несколько составляющих. Композиционные материалы (или композиты) представляют собой многокомпонентные материалы, структура которых состоит из: пластичной основы (матрицы) и армированных наполнителей. Последние, как правило, являются очень прочными и жесткими. Благодаря возможности сочетать различные вещества становится возможным получать каждый раз новый материал, отличающийся своими свойствами от свойств каждого из его компонентов как качественно, так и количественно.

Так, в основе композитных материалов может находиться любой компонент, начиная от керамики и стекла, и заканчивая металлом и углеродами. Использование того или иного наполнителя напрямую зависит от того, насколько жестким, прочным, деформируемым получится материал на выходе. А матрица влияет на монолитность материала, передачу натяжения в наполнителе, а также устойчивость к разного рода воздействиям. Их главным отличием и преимуществом является то, что их матрица образуется из разнообразных полимеров, которые и являются связующим материалом для арматуры. В свою очередь, арматурой могут служить волокна, ткани, пленки и другие материалы.

Свойства полимерных композиционных материалов

Как уже говорилось выше, ПКМ являются очень прочными материалами. Сказать о том, что абсолютно все подобные материалы обладают одинаковыми свойствами, будет не верно. Ведь, в процессе производства путем компоновки разных материалов получается совершенно новый ПКМ со своими индивидуальными свойствами. Однако, некоторые, так сказать, общие свойства, присущи практически каждому такому материалу, все таки существуют. К ним относятся:

  1. Упругость;
  2. Жесткость;
  3. Низкий удельный вес;
  4. Устойчивость к разного рода химическим воздействиям (например, кислоты, щелочи, растворителей, масел, морской воды);
  5. Теплостойкость;
  6. Радиопрозрачность;
  7. Вибростойкость;
  8. Электроизоляционность;
  9. Демпфирующие способности;
  10. Отсутствие чувствительности к магнитному полю;
  11. Привлекательный внешний вид;
  12. Отсутствие необходимости в дополнительном покрытии разными лакокрасочными материалами.

Стоит также отметить, что ПКМ имеют ряд преимуществ, в отличие от других материалов, которые заключаются в технологичности, относительно низкой стоимости, простоте изготовления, а также в низкой плотности. Однако, стоит упомянуть и о недостатках, которые также присутствуют, несмотря на множество положительных характеристик. К недостаткам можно отнести малый температурный диапазон, при котором допустимо использовать данные материалы, относительно малые значения межслойной сдвиговой прочности и отрыва. На сегодняшний день присутствуют такие связующие, которые позволяют работать с изделиями из ПКМ при температурах, не выше 300-400 градусов Цельсия.

Технология полимерных композиционных материалов

Для формирования ПКМ используется несколько методов – прессование, литье под давлением, экструзия, напыления. Получение того или иного полимерного композиционного материала зависит от нескольких факторов. Главным образом, влияние на технологию производства оказывают: тип наполнителя и агрегатное состояние самого полимера. Так, наполнитель может быть дисперсным, волокнистым или слоистым. Полимер, в свою очередь, - жидкий или твердый.

На сегодняшний день существует полимерные композиты можно разделить на четыре основные группы:

  1. Слоистые пластики (текстолиты), образованные волокнистыми слоями;
  2. Литьевые, прессовочные композиции, созданные из рубленных;
  3. Ориентированные армированные пластики. Данный материал формируется стеклянными или синтетическими волокнами, а также прядями и нитями, путем их параллельного укладывания, чередуя со связующим веществом;
  4. Стеклопластики. Их основой при производстве являются заранее сформированные волокна.

Стоит отметить, что если при производстве ПКМ применяется дисперсный наполнитель, в таком случае присутствует еще одна стадия технологического процесса – мокрого метода.

Также ученым удалось разработать еще один принципиально новый способ, которым можно получить ПКМ, - полимеризационный наполнитель. Данный метод позволяет на выходе получать исключительно качественные новые материалы.  

lkmprom.ru

4.3 Полимерные композиционные материалы

СВОЙСТВА ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Полимерными композиционными материалами (ПКМ), или пластиками, называют системы, состоящие из полимерной матрицы (связующего) и упрочняющего наполнителя в виде волокон или порошкообразных веществ.

В настоящее время создана целая индустрия ПКМ. Из них изготавливают баллоны для сжатых газов, корпусы ракетных двигателей, цистерны для нефтепродуктов, лопасти винтов вертолетов, трубы для химических веществ, авиационные шасси, волноводы, понтоны, корпусы лодок, ракетки для тенниса, ружейные стволы, удочки, печатные электросхемы, рессоры автомобилей и многие другие изделия.

Одним из факторов, сдерживающих широкое применение ПКМ, в частности стеклопластиков, была их сравнительно низкая жесткость. За последние годы в связи с разработкой новых сортов стеклянных волокон с повышенным модулем упругости, а также таких высокомодульных волокон, как углеродные, борные, карбидокремниевые, удалось резко повысить жесткость пластиков. Угле - и боропластики имеют модуль Юнга, близкий к стали, а по удельной жесткости в несколько раз превосходят промышленные металлы. Это дало возможность применять ПКМ в ответственных, сильно нагруженных конструкциях, которые раньше изготавливались исключительно из металлов.

Во многих случаях, когда от изделий требуется высокая несущая способность при минимальном весе, высокопрочные и высокомодульные пластики оказываются эффективнее металлов. Кроме высоких механических характеристик и низкого удельного веса к числу ценных качеств ПКМ следует отнести их стойкость к воздействию кислот, щелочей, органических растворителей, масел и морской воды. Армированные пластики технологичны, обладают высокой демпфирующей способностью и вибростойкостью, радиопрозрачностью, тепло- и электроизоляционными свойствами, нечувствительностью к магнитному полю. Технологические процессы их производства можно полностью автоматизировать и механизировать, изделия из них имеют красивый внешний вид и не требуют специальной защитной окраски.

Основные преимуществами новых ПКМ по сравнению с МКМ: простота изготовления, технологичность, дешевизна, низкая плотность. Основной их недостаток - ограниченный температурный интервал эксплуатации, сравнительно низкие значения межслойной сдвиговой прочности и отрыва. Современные полимерные связующие могут обеспечить работоспособность изделий из них до температур, не превышающих 300 - 400С.

ПОЛИМЕРНЫЕ СВЯЗУЮЩИЕ

СВЯЗУЮЩЕЕ - это вещество или группа веществ, используемых в качестве матрицы в ПКМ. Выбирают связующее, в зависимости от требований, предъявляемых к механическим и физико-химическим свойствам ПКМ. Оно должно обеспечить заданную форму изделия, монолитность материала, и требуемый уровень тепло- и электропроводности и термического расширения, перераспределение напряжений, коррозионную стойкость, возможность переработки применяемыми в промышленности методами и экономическую эффективность. Обычно полимерные связующие аморфны и не имеют определенной точки плавления.

В качестве связующих в ПКМ применяют синтетические высокомолекулярные вещества различного химического состава - полимеры, которые были рассмотрены подробно ранее в разделе органические полимерные материалы.

Следует напомнить, что молекулы полимеров представляют собой соединения, состоящие из большого числа элементарных звеньев - мономеров. Строение молекул полимеров и химическая природа мономеров определяют свойства полимерных материалов.

Как было отмечено ранее, по поведению при нагреве и охлаждении полимерные материалы принято разделять на термопластичные и термореактивные.

В качестве связующих для конструкционных ПКМ, работающих под нагрузками, в подавляющем большинстве случаев используют термореактивные смолы.

Выбор связующего определяет особенности технологии изготовления ПКМ и его эксплуатационные свойства. Наиболее широко в производстве конструкционных ПКМ применяют эпоксидные, полиэфирные, фенольные, кремнийорганические и полиамидные смолы.

ВИДЫ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

Некоторые из полимерных конструкционных материалов были рассмотрены при изучении темы «Пластмассы» в разделе «Термореактивные полимеры». Это такие материалы как асбоволокниты, стекловолокниты, гетинакс, текстолит, древеснослоистые пластики, материал СВАМ. Здесь будут рассмотрены другие виды полимерных композиционных материалов.

Стеклопластики - это ПКМ, содержащие в качестве наполнителя стеклянные волокна.

Стеклопластики - одни из первых конструкционных материалов на полимерной основе. Они наиболее полно изучены, их давно применяют в промышленности. В настоящее время выпускают стеклопластики с ориентированным (однонаправленным и перекрестным) и неориентированным (хаотичным) расположением волокон. В первом случае в качестве арматуры используют непрерывные, во втором случае - дискретные (рубленые или штапельные) волокна. Стекловолокно может иметь круглое или профильное сечение, быть сплошным или полым.

Ориентированные стеклопластики. Однонаправленные стеклопластики получают формованием набора слоев стеклошпона или намоткой на оправку пропитанных стеклянных жгутов. Характерный пример однонаправленного стеклопластика - стекловолокнистый анизотропный материал - СВАМ.

Наибольшую прочность и жесткость однонаправленные стеклопластики имеют вдоль волокон. Использование высокопрочных стеклянных волокон марок Е и ВМ-1 позволяет получить прочность однонаправленных стеклопластиков в направлении волокон 1600 – 2100 МПа, при этом удельная прочность в несколько раз выше, а модуль упругости имеет примерно такую же величину, как у лучших алюминиевых сплавов (табл. 4.3).

Однако прочность однонаправленных стеклопластиков в направлении, перпендикулярном к осям волокон, очень низка, она определяется в основном свойствами связующего и составляет несколько килограммов сил на квадратный сантиметр.

Перекрестноармированные ориентированные стеклопластикилишены этого недостатка. Их получают укладкой стеклошпона,

Таблица 4.3 – Физико-механические характеристики

некоторых конструкционных материалов

Материал

Плотность г/см3

Разрушающее напряжение при растяжении р, МПа

Модуль упругости при растяжении Е, кгс/мм2

Однонаправленный стеклопластик на

основе:

волокна Е

2,1

1600

56000

волокна ВМ-1

2,2

2100

70000

Ортогонально-перекрестный стеклопластик СВАМ

(волокно Е):

10:1

1,9

950

54000

1:1

1,9

500

35000

Стеклотекстолит на основе волокна ВМ-1

1,95

860

37000

Сталь 30ХГСА

7,85

1600

210000

Дуралюмин Д16

2,8

460

72000

нитей или жгутов в различных направлениях или с использованием в качестве арматуры стеклотканей (стеклотекстолиты). Изменяя соотношение числа монослоев в различных направлениях, можно в широких пределах регулировать прочность и модуль Юнга стеклопластиков.

Механические свойства стеклотекстолитов можно варьировать, применяя различные марки волокон, идущих на изготовление стеклотканей, виды переплетения волокон в ткани (сатиновое, саржевое, полотняное), соотношение чисел волокон по основе и утку.

К числу новых ПКМ следует отнести стеклопластики, армированные полыми и профильными стеклянными волокнами. Стеклопластики с полыми волокнами меньше весят, у них повышенные удельные прочность и жесткость

при изгибе и сжатии. Кроме того, эти стеклопластики имеют низкую величину диэлектрической постоянной и достаточно прозрачны.

В ПКМ с полыми волокнами сложно обеспечить высокое качество самих волокон; кроме того, у них повышенное водопоглощение. Профильные волокна имеют сравнительно низкую прочность при растяжении ( 1400 МПа), что вызвано недостатками метода их формования.

Однонаправленные стеклопластики используют для изготовления профильных изделий - уголков, швеллеров, тавров, трубок; их применяют для усиления и снижения массы металлических конструкций - баллонов внешнего и внутреннего давлений.

Материалы с перекрестным армированием применяют в различных строительных конструкциях типа оболочек, в секциях крыльев, хвостового оперения и фюзеляжа самолетов. Из этих материалов получают плиты, трубы, контейнеры, корпусы ракетных твердотопливных двигателей, сосуды высокого давления, лопасти вертолетов, радиолокационные обтекатели, топливные баки, авиационную броню, корпусы машин, пресс-формы, предохранительные кожухи станков, изоляторы для электродвигателей и трансформаторов, футеровку емкостей для химического машиностроения и многие другие изделия для различных областей техники.

Один из существенных недостатков ориентированных пластиков - их низкая прочность при межслоевом сдвиге. Этот недостаток в значительной степени преодолен в стеклопластиках с пространственным армированием. Получают его, применяя в качестве наполнителя многослойные пространственно сшитые стеклоткани. При этом сдвиговая прочность КМ возрастает в 2 - 2,5 раза, но из-за существенного искривления волокон уменьшается прочность при растяжении.

Неориентированные стеклопластики содержат хаотично расположенные в плоскости (реже в пространстве) короткие волокна и характеризуются большей, чем у ориентированных пластиков изотропией свойств. Их прочность и жесткость меньше, но в то же время и цена ниже, чем у ориентированных пластмасс. К числу неориентированных стеклопластиков относят пресс - волокниты. Их получают из стекловолокон длиной 5 - 100 мм и частично отвержденного связующего формованием в пресс - формах при высоких давлениях. Физико-механические свойства некоторых отечественных волокнитов приведены в таблице 4.4.

Отечественная промышленность выпускает также стеклопластики на основе матов (стеклохолстов) из хаотично расположенных нитей или штапельных волокон, скрепленных между собой механически (прошивкой) либо с помощью различных эмульсий и смол. Маты, совместно со связующим, подвергают контактному или вакуумному формованию. Такие стеклопластики самые дешевые.

Таблица 4.4 – Физико-механические свойства некоторых

отечественных пресс волокнитов

Показатели

АГ-4В

33-18В

П-5-2

КМС-9

РТП-170

РТП-200

Плотность, г/см3

1,7-1,9

1,9

1,7-1,8

1,6 –1,9

1,7–1,85

1,75-1,85

Разрушающее напряжение, при:

растяжении, МПа

80

130-180

-

15-18

-

-

изгибе, МПа

120

200

140

40

70

60

сжатии, МПа

130

150

130

80

40

60

ударная вязкость, кДж/м2

30

200

50

17

60

80

К неориентированным стеклопластикам относятся также материалы, получаемые одновременным напылением рубленных волокон и связующего на форму. Такая технология позволяет механизировать получение заготовок и снизить стоимость ПКМ.

Неориентированные пластики применяют в производстве светопрозрачных покрытий для теплиц, корпусов лодок, автомобилей, мебели, дачных домиков, покрытий полов, облицовки бетонных и железобетонных конструкций, силовых деталей электрооборудования и др.

В настоящее время в стоматологии для пломбирования, протезирования и восстановления анатомической формы зубов применяются также полимерные композиционные материалы, которые можно отнести к стелопластикам. Таким материалом, например, является светоотверждаемый микрогибридный композиционный пломбировочный материал ”LATELUX”. Матрицей этого материала являются термореативные полимерные материалы, а наполнителем мелкозернистое барий-алюминий-боросиликатное стекло и диоксид кремния со средним размером частиц 0,6 мкм. Содержание наполнителя составляет 60,8%. Затвердевает материал под воздействием видимого света в течении 60 с на глубину 4,5 - 6,0 мм.

Углепластики - это ПКМ, содержащие в качестве наполнителя углеродные волокна. В литературе углепластики называют также карбоволокнитами, карбопластами и углеродопластами.

В зависимости от температуры нагрева исходных волокон получают низко- и высокомодульные углеродные волокна, которые выпускают в виде жгутов и лент различной ширины.

Углепластики с низкомодульными волокнами в качестве конструкционных не используют. Из них изготавливают токопроводящие, теплозащитные и антифрикционные материалы.

Для конструкционных углепластиков характерны низкая плотность высокий модуль упругости, прочность, термостойкость, низкий коэффициент линейного расширения, высокие тепло- и электропроводность.

Свойства материалов определяются материалом связующего, свойствами, концентрацией и ориентацией волокон. Углепластики на основе эпоксидных смол имеют высокие характеристики прочности при температурах ниже 200С.

По удельной прочности и жесткости углепластики оставляют далеко позади стеклопластики, сталь, алюминиевые и титановые сплавы.

В углепластиках, предназначенных для длительной работы при температурах до 250С, используют фенольные смолы, до 300С - кремнийорганические и до 330С - полиимидные связующие.

Разрабатываются связующие с рабочими температурами до 417С.

Еще более выраженным, чем у стеклопластиков, недостатком углепластиков является низкая прочность при межслоевом сдвиге. Это связано со слабой адгезией полимеров к углеродным волокнам.

Анизотропия свойств у углепластиков выражена еще более резко, чем у стеклопластиков. Связано это с тем, что отношение модулей упругости наполнителя и связующего у углепластиков существенно выше, чем у стеклопластиков. Кроме того, для углепластиков характерно наличие разницы между упругими свойствами самих волокон вдоль оси и перпендикулярно к ней, что приводит к дополнительной анизотропии.

Углепластики отличает высокое сопротивление усталостным нагрузкам. По величине предела выносливости на единицу массы углепластики значительно превосходят стеклопластики и многие металлы. Ценное свойство углепластиков - их высокая демпфирующая способность и вибропрочность. По этим показателям углепластики превосходят металлы и некоторые другие конструкционные материалы.

Сочетание высокой жесткости, усталостной и вибрационной прочности делает углепластики перспективным материалом для конструкций, которые работают в условиях возможного возникновения флаттера (обшивки самолетов, лопасти вентиляторов двигателей и т.п.) и для других деталей летательных аппаратов.

Характерная особенность углепластиков - высокая теплопроводность, которая зависит от объемной доли и ориентации волокон, а также от направления теплового потока. Так, теплопроводность однонаправленного углепластика на эпоксидном связующем в направлении оси волокон составляет около 13 ккал/(мּСּч), что близко к теплопроводности титана, а в перпендикулярном направлении она равна 0,54 - 0,8 ккал/(мּСּч), что всего в 1,5 - 2 раза выше, чем у стеклопластиков.

Углепластики обладают достаточно высокой электропроводностью, что позволяет применять их как антистатические и электрообогревающие материалы.

В некоторых случаях применение в качестве наполнителя только углеродных волокон не обеспечивает необходимую вязкость, эрозионную стойкость, прочность при сжатии, растяжении и сдвиге. Тогда связующие одновременно армируют углеродными и стеклянными или углеродными и борными волокнами. Комбинированное армирование позволяет расширить диапазон значение прочности, жесткости и плотности ПКМ. Полимерные материалы, армированные углеродными и стеклянными волокнами, называют углепластиками или карбостекловолокнитами. Полимерные материалы, в которых в качестве наполнителя используются углеродные и борные волокна, называют углеборопластиками или карбобороволкнитами.

Применяются углепластики в первую очередь в таких отраслях новой техники, как космонавтика, авиация и ядерная техника. Именно здесь нужны материалы с высокой прочностью и жесткостью при низкой плотности. Кроме того, относительно высокая (по сравнению со стеклопластиками и металлами) стоимость этих ПКМ, обусловленная недостаточно большими пока масштабами производства, для этих областей промышленности не становится препятствием.

В космической технике углепластики применяют для солнечных батарей, баллонов высокого давления, теплозащитных покрытий.

ПКМ с углеродными волокнами используют в качестве конструкционных радиационно-стойких материалов для рентгеновской аппаратуры и космических приборов, изготовления контейнеров, используемых в ядерных экспериментах (графит имеет малое сечение захвата нейтронов).

Химическая стойкость углепластиков позволяет применять их в производстве кислотостойких насосов, уплотнений и т.д.

Углеродные волокна имеют низкий коэффициент трения - и это дает возможность использовать их в качестве наполнителя для различных связующих, из которых делают подшипники, прокладки, втулки, шестерни.

УУКМ - углерод-углеродные композиционные материалы, представляют отдельную группу углепластиков, у которых армирующим волокном является углеродное волокно, а матрицей пироуглерод, кокс каменноугольного и нефтяных пеков и стеклоуглерод.

Свойства углеродных волокон были рассмотрены ранее. Матричные материалы представляют собой, как правило, одну из переходных форм углерода, которые были рассмотрены ранее при изучении свойств графита.

Свойства УУКМ аналогичны свойствам других углепластиков. Однако их отличает то, что для них характерно некоторое улучшение механических свойств с повышением температуры. Это объясняется релаксацией внутренних напряжений за счет улучшения пластических свойств при повышенных температурах и “залечиванием” дефектов вследствие термического расширения материала при повторном нагреве до температуры изготовления. На рисунке 4.9 показано изменение прочности при испытаниях на растяжение с изменением температуры УУКМ. Как видно, прочность на растяжение в направлении осей z и x увеличивается. С увеличением температуры увеличивается и коэффициент линейного термического расширения и теплопроводности.

Применяются УУКМ в авиастроении для изготовления тормозных дисков толщиной не более 25 мм. Диски эксплуатируются в самолетах “Конкорд”. Для самолета “Мираж -2000” используют конструкции тормозных дисков из УУКМ марки “Сепкарб - 45” и “Сепкарб - 43”. Это позволяет снизить массу тормозных систем на 42 - 48%.

Применяются УУКМ в возвращаемых космических объектах. Так в программе “Apollo” из УУКМ “Пирокарб - 406” изготавливали наружную стенку контейнера для хранения капсулы с изотопами.

Рисунок 4.9 – Зависимость прочности при испытаниях на

растяжение УУКМ от температуры

(УУКМ трехмерного армирования;

распределение прядей 2х, 2у, 3z;

прочность на растяжение в направлениях:

1- х, 2 – у)

Для теплозащиты космического корабля “Шаттл” используется углерод-углеродный композиционный материал, сохраняющий прочность при нагреве до температур 1650С.

В металлургической промышленности из УУКМ изготавливают пресс-формы для горячего прессования тугоплавких металлов и сплавов. Эти пресс-формы отличаются высокой прочностью, термостабильностью, высоким сопротивлением к термическому удару, малой массой, химической инертностью, способностью быстро охлаждаться и, кроме того, более длительным сроком эксплуатации. Штампы из УУКМ сохраняют прочность до температур 1000С. Наиболее часто используется композиционный материал марки “Карбитекс”. Его применение позволяет снизить массу штампа, по сравнению с металлическим в 100 раз.

В машиностроении для изготовления подшипников скольжения используются антифрикционные материалы марки НИГРАН, НИГРАН-В на основе графитов, пропитанных полимерными связующими.

В медицине УУКМ имеют перспективу использования для изготовления армирующих пластинок для соединения костей при переломах, изготовления сердечных клапанов, имплантируемых зубов, зубных протезов.

В реактостроении углерод-углеродные материалы применяются для изготовления узлов активной зоны высокотемпературных водоохлаждаемых реакторов.

В электротехнике УУКМ может применяться для создания нагревательных элементов при рабочих температурах до 3000С.

Боропластики (бороволокниты) - это ПКМ, в которых как арматуру используют борные волокна.

Диаметр борных волокон 90 - 150 мкм, в то время как диаметр элементарных углеродных волокон 5 - 7 мкм. Борную арматуру применяют в виде арматурных нитей, однонаправленных лент различной ширины, листового шпона и тканей.

Свойства. Плотность боропластиков 2,2 г/см3 - выше, чем углепластиков. Но большой диаметр волокон обеспечивает большую устойчивость изделий из них под действием сжимающих нагрузок. Наибольшую прочность и жесткость удается реализовать в однонаправленных боропластиках вдоль оси волокон.

Недостатком однонаправленных боропластиков, как и других ПКМ с такой текстурой, является низкая прочность и жесткость в направлениях, перпендикулярных к оси волокон. Чтобы повысить эти характеристики используют перекрестное армирование с расположением слоев под углами 90, 60 и 45. Перекрестно армированные боропластики имеют меньшую анизотропию свойств.

ПКМ с борными волокнами имеют высокие значения предела усталостной прочности, который очень слабо зависит от температуры испытаний в пределах работоспособности связующего.

Сочетание перечисленных свойств делает целесообразным применение боропластиков в изделиях, работающих в условиях вибрации.

Как и для углепластиков, для боропластиков в качестве связующего чаще всего используются эпоксидные смолы. Термостойкие связующие для своего отверждения нуждаются в больших давлениях и высоких температурах; часто бывает трудно обеспечить отсутствие в них пор, пористость может доходить до 7 -20%.

Борные волокна относятся к классу полупроводников, что позволяет получать в армированных ими ПКМ сравнительно высокие значения тепло- и электропроводности.

Применяются боропластики, как и углепластики, в космической и авиационной технике. Их высокая прочность и жесткость при сжатии используется при конструировании несущих частей летательных аппаратов - балок, панелей и т.д. Например, если металлическая двутавровая балка работает на изгиб, то ту ее полку, на которой действуют сжимающие напряжения, усиливают пластинами из боропластика, а другую полку, работающую на растяжение, упрочняют углепластиком. Масса такой балки на 20 - 30% ниже, чем масса балки из алюминиевых сплавов при одинаковой несущей способности.

В настоящее время проектируется применение боропластиков в лопастях несущих и хвостовых винтов и в трансмиссионных валах вертолетов, в стойках шасси, отсеках фюзеляжа, обшивке крыльев самолетов, в дисках компрессоров газотурбинных двигателей. В перспективе использование боропластиков в корпусных деталях, работающих при всестороннем или одноосном сжатии, в трубах, сосудах внутреннего давления. Замена металлических изделий боропластиковыми позволяет снизить их массу, повысить удельную жесткость, статическую прочность предел выносливости и вибропрочность.

Металлопластики - это ПКМ, содержащие в качестве наполнителя металлические волокна.

Наиболее широко как наполнитель для металлопластиков применяют стальную проволоку. Она недорога, промышленностью выпускается в широких масштабах, при технологических операциях практически не утрачивает своей прочности.

По сравнению с другими ПКМ у металлопластиков повышенная ударная вязкость и статическая усталость (т.е. они мало разупрочняются во времени), меньший разброс свойств, высокая эрозионная стойкость.

Недостаток металлопластиков, армированных стальными волокнами, - их высокий удельный вес, поэтому удельная прочность у них ниже, чем у боро-, угле- и стеклопластиков, а удельная жесткость приближается к последним. Этого недостатка лишены металлопластики, армированные бериллиевой проволокой. Эти материала перспективны. Но, чтобы металлопластики, в которых они используются как наполнитель, оказались конкурентоспособными с другими ПКМ, необходимо повысить пластичность бериллиевых проволок. Кроме того бериллий токсичен, поэтому при работе с ним нужно соблюдать специальные меры техники безопасности.

Металлические волокна часто добавляют в боро- и углепластики. Это повышает вязкость разрушения, сопротивление распространению трещин, эрозионную стойкость, теплозащитные характеристики.

Карбидопластики - это ПКМ, содержащие в качестве наполнителя волокна карбидов. В настоящее время исследуются свойства связующих с волокнами карбида кремния SiC.

Пока карбидопластики имеют несколько меньшую прочность, чем боропластики, но больший модуль Юнга. Это вызвано тем, что выпускаемые в настоящее время волокна SiC менее прочны при низких температурах чем борные, но обладают большей жесткостью.

Использовать волокна SiC в качестве наполнителя целесообразно для термостойких связующих. Преимущество карбидокремниевых волокон перед борными в их меньшей чувствительности к повышенным температурам, большей высокотемпературной прочности и длительной прочности. Поэтому карбидопластики, вероятнее всего, найдут применение в качестве материалов для изделий высокотемпературного назначения.

Органопластики (органоволокниты) - это ПКМ, содержащие в качестве наполнителя органические волокна. Это самый старый вид ПКМ, появившийся в начале 20 века. Частично эти виды ПКМ рассматривались ранее в разделе «Термореактивные пластмассы».

В начале развития их армировали природными органическими волокнами - хлопчатобумажными, льняными, джутовыми, целлюлозными. Однако недостаточно высокий уровень прочности, жесткости, термостойкости и дефицитность природных волокон привели к постепенному вытеснению их синтетическими волокнами - капроном, нитроном, найлоном, лавсаном и др. Отличительные особенности органопластиков - их низкая плотность, высокая стабильность свойств, низкая пористость, повышенная пластичность и ударная вязкость, низкая теплопроводность (в 2 - 3 раза ниже, чем у стеклопластиков).

В последние годы разработаны новые типы органических волокон, из которых наиболее прочны и жестки волокна марки RKD - 49 (фирмы “Du Pont” - США) на основе ароматических полиамидов.

Недостаток органопластиков их низкая прочность при сжатии.

Иногда изготавливают, так называемые, самоармированные органоволокниты. Это материалы, в которых матрица и арматура имеют одинаковый химический состав, но различную структуру. Так, полиамидные смолы армируют полиамидными волокнами.

Органопластики используют в качестве конструкционных материалов (преимущественно с волокнами типа RKD - 49). Их применение в сотовых конструкциях, панелях пола и потолка, дверях, перегородках и задних стойках крыльев самолетов позволяет резко снизить массу конструкций и увеличить их полезную мощность. Органопластики широко применяют в электро- и радиотехнике для изготовления корпусов приборов, радиопрозрачных обтекателей антенн, изоляторов. Их используют и в теплозащитных устройствах.

studfiles.net

Композитные материалы

Полимерные композиционные материалы (далее – ПКМ) представляют собой симбиоз двух и более материалов. Основой или матрицей полимерных композитов служат различные пластики (термопласты, эластомеры, реактопласты). Матрица армирована различными составляющими (армирующими волокнистыми наполнителями – АВН), сочетание свойств которых в итоге образует совершенно новый материал с уникальными свойствами, которые отличаются по качеству и количеству от свойств самих наполнителей и матрицы.

Изменение состава матрицы и ее компонентов дает возможность получить материалы с необходимыми в той или иной отрасли промышленности или науки свойствами. Их масса меньше, это создает предпосылки к облегчению общего веса планируемого изделия. Технические же характеристики такого изделия как минимум останутся на прежнем уровне или (чаще всего) будут значительно улучшены.

ПКМ подразделяются по природе своей матрицы. Это - стеклопластики, - органопластики, - углепластики, - боропластики, - текстолиты, - с порошковым наполнением.

По типам ПКМ подразделяется на:

  • полимеры, содержащие твердые частицы;
  • полимеры, с содержанием жидкости;
  • полимеры с газообразными наполнителями;
  • смеси из нескольких полимеров.

 Применение ПКМ в строительстве

Строительство с использованием полимерных композитов в настоящее время переживает подъем. Востребованы такие материалы, как арматура из стеклопластика, она же – стекловолокновая, а также базальтовая, сендвич-панели, сваи (шунтовые и гибкие), множественные элементы мостов. Стекловолокновая арматура завоевывает все большую популярность, так как она используется в изготовлении конструкций с повышенной сейсмостойкостью. Арматура из ПКМ, в сравнении со стальной, имеет также значительно меньшую плотность (легче в 3-4 раза) и не подвержена коррозии и каким-либо химическим воздействиям.

 Применение в промышленности

На производстве к герметичности используемых емкостей применяются высокие требования. Им успешно соответствуют емкости из стеклопластика. На предприятиях в целях охраны окружающей среды массово используют бассейны и резервуары из стеклопластика. Эти емкости хранят жидкость, которую невозможно утилизировать через обычные канализационные коммуникации. Они требуют профилактики, но их долговечность признана всеми. Высокие антикоррозийные качества таких резервуаров не допустят утечки вредных для экологии жидкостей.

При изготовлении электротехнического оборудования (а также в станко-, приборо-, судостроении и т.д., но особенно в авиастроении) применяется листовой стеклотекстолит. Сам по себе листовой текстолит состоит из несколько слоев стеклоткани и произведен методом горячей прессовки. Это продукт с высокими электроизоляционными качествами: отличный диэлектрик, с высокими механическими свойствами, обладающий влагостойкостью. Долговечен. Он не горюч и не взрывоопасен, не обладает токсичностью. Воспламеняется при температуре с +350°C. Опасность при работе с ним представляет стекловолокновая пыль, требования к работе с этим материалом на производстве – самые строгие.

Отличный диэлектрик и гетинакс. Это ПКМ с бумажной матрицей, изготавливаемой горячим прессованием, как и текстолит. Несмотря на такую якобы «ненадежную» бумажную основу, будучи пропитанным соответствующими смолами (например, эпоксидной или фенолоформальдегидной) он начинает гореть при +95°C. Прочность на сжатие у него ниже, чем у текстолита, но при изготовлении изолирующих крышек, прокладок, шайб и т.п. он хорошо подходит. Помимо хороших диэлектрических свойств гетинакс успешно сопротивляется действию минеральных масел и смазки. Для улучшения электрической сопротивляемости детали из гетинакса покрывают лаком. Гетинакс чаще всего используется целыми панелями и выпускают его, как правило, в листах 1,5 Х 1 метр.

Самое главное, в чем ПКМ превосходят остальные материалы это то, что они создаются одновременно и часто - под конкретный проект или конструкцию. Варьирование составляющими позволяет создавать те ПКМ, характеристики которых оптимальны для конкретной задачи. Каждое изделие требует индивидуального подхода к его производству, и конструктор, оперируя полимерами, всегда придет к оптимальному их составу.

promresursy.com

Волокнистые композиционные материалы

В истории развития техники может быть выделено два важных направления :

  • развитие инструментов, конструкций, механизмов и машин,
  • развитие материалов.

Какое из них главнее сказать сложно, т.к. они довольно тесно взаимосвязаны, но без развития материалов технический прогресс невозможен в принципе. Не случайно, историки подразделяют ранние цивилизационные эпохи на каменный век, бронзовый век и век железный.

Нынешний 21 век уже можно отнести к веку композиционных материалов (композитов).

Понятие композиционных материалов сформировалось в середине прошлого, 20 века. Однако, композиты вовсе не новое явление, а только новый термин, сформулированный материаловедами для лучшего понимания генезиса современных конструкционных материалов.

Композиционные материалы известны на протяжении столетий. Например, в Вавилоне использовали тростник для армирования глины при постройке жилищ, а древние египтяне добавляли рубленную солому в глиняные кирпичи. В Древней Греции железными прутьями укрепляли мраморные колонны при постройке дворцов и храмов. В 1555-1560 при постройке храма Василия Блаженного в Москве русские зодчие Барма и Постник использовали армированные железными полосами каменные плиты. Прямыми предшественниками современных композиционнных материалов можно назвать железобетон и булатные стали.

Существуют природные аналоги композиционных материалов — древесина, кости, панцири и т.д. Многие виды природных минералов фактически представляют собой композиты. Они не только прочны, но обладают также превосходными декоративными свойствами.

Композиционные материалы — многокомпонентные материалы, состоящие из пластичной основы — матрицы, и наполнителей, играющих укрепляющую и некоторые другие роли. Между фазами (компонентами) композита имеется граница раздела фаз.

Сочетание разнородных веществ приводит к созданию нового материала, свойства которого существенно отличаются от свойств каждого из его составляющих. Т.е. признаком композиционного материала является заметное взаимное влияние составных элементов композита , т.е. их новое качество, эффект.

Варьируя состав матрицы и наполнителя, их соотношение, применяя специальные дополнительные реагенты и т.д., получают широкий спектр материалов с требуемым набором свойств.

Большое значение расположение элементов композитного материала, как в направлениях действующих нагрузок, так и по отношению друг к другу, т.е. упорядоченность. Высокопрочные композиты, как правило, имеют высокоупорядоченную структуру.

Простой пример. Горсть древесных опилок, брошенная в ведро цементного раствора никак не повлияет на его свойства. Если опилками заменить половину раствора — то существенно изменится плотность материала, его теплофизические константы, себестоимость производства и др. показатели. Но, горсть полипропиленовых волокон сделает бетон ударопрочным и износостойким, а полведра фибры обеспечат ему упругость, совсем не свойственную минеральным материалам.

В настоящее время в область композиционных материалов ( композитов ), принято включать разнообразные искусственные материалы, разрабатываемые и внедряемые в различных отраслях техники и промышленности, отвечающие общим принципам создания композитных материалов

Почему интерес к композиционным материалам проявляется именно сейчас ? Потому, что традиционные материалы уже не всегда или не вполне отвечают потребностям современной инженерной практики.

Матрицами в композиционных материалах являются металлы, полимеры, цементы и керамика. В качестве наполнителей используются самые разнообразные искусственные и природные вещества в различных формах ( крупноразмерные, листовые, волокнистые, дисперсные, мелкодисперсные, микродисперсные, наночастицы).

Известны также многокомпонентные композиционные материалы, в т.ч.:

  • полиматричные, когда в одном композиционном материале сочетают несколько матриц,
  • гибридные, включающие несколько разных наполнителей, каждый из которых имеет свою роль.

Наполнитель, как правило, определяет прочность, жесткость и деформируемость композита, а матрица обеспечивает его монолитность, передачу напряжений и стойкость к различным внешним воздействиям.

Особое место занимают декоративные композиционные материалы, имеющие выраженные декоративне свойства.

Разрабатываются композитные материалы со специальными свойствами, например радиопрозрачные материалы и радиопоглощающие материалы, материалы для тепловой защиты орбитальных космических аппаратов, материалы с малым коэффициентом линейного термического расширения и высоким удельным модулем упругости и другие.

Композиционные материалы используются во всех областях науки, техники, промышленности, в т.ч. в жилищном, промышленном и специальном строительство, общем и специальном машиностроении, металлургии, химической промышленности, энергетике, электронике, бытовой технике, производстве одежды и обуви, медицине, спорте, искусствах и т.д.

Структура композиционных материалов.

По механической структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты.

Волокнистые композиты армируются волокнами или нитевидными кристаллами. Даже небольшое содержание наполнителя в композитах такого типа приводит к существенному улучшению механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в триплексах, фанере, клееных деревянных конструкциях и слоистых пластиках.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20-25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов еще меньше и составляют 10-100 нм.

Некоторые распространеные композиты

Бетоны — самые распространенные композиционные материалы. В настоящее время производится большая номенклатура бетонов, отличающихся по составам и свойствам. Современные бетоны производятся как на традиционных цементных матрицах, так и на полимерных ( эпоксидных, полиэфирных, фенолоформальдегидных, акриловых и т.д.). Современные высокоэффективные бетоны по прочности приближаются к металлам. Популярными становятся декоративные бетоны.

Органопластики — композиты, в которых наполнителями служат органические синтетические, реже — природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, обладают относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе. К наиболее распространенным органопластикам относятся древесные композиционные материалы. По объемам производства органопластики превосходят стали, аллюминий и пластмассы.

Что такое композитный материал

В зарубежной литературе в последнее время становятся популярными новые термины — биополимеры, биопластики и соответственно — биокомпозиты.

Древесные композиционные материалы. К наиболее распространенным древесным композитам относятся арболиты, ксилолиты, цементностружечные плиты, клееные деревянные конструкции, фанеры и гнутоклееные детали, древесные пластики, древесностружечные и древесноволокнистые плиты и балки, древесные прессмассы и пресспорошки, термопластичные древесно-полимерные композиты.

Стеклопластики — полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Стеклопластики обладают высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Углепластики — наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Матрицами в угепластиках могут быть как термореактивные, так и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики — очень легкие и, в то же время, прочные материалы.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы — наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С.

Боропластики — композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Пресспорошки ( прессмассы). Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить др. Бакеланд (Leo H. Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола — вещество хрупкое, обладающее невысокой прочностью. Бакеланд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал — бакелит — приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя — пресс-порошок — под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это — ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются в самых разных областях техники. Для наполнения термореактивных и термопластичных полимеров применяются разнообразные наполнители — древесная мука, каолин, мел, тальк, слюда, сажа, стекловолокно, базальтовое волокно и др,

Текстолиты — слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х г.г. на основе фенолформальдегидной смолы. Полотна ткани пропитывают смолой, затем прессуют при повышенной температуре, получая текстолитовые пластины или фасонные изделия. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, а иногда и неорганические связующие на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон — хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Композиционные материалы с металлической матрицей. При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат высокопрочные волокна, тугоплавкие частицы различной дисперсности, нитевидными монокристаллы оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3-15 мм и диаметром 1-30 мкм.

Основными преимуществами композиционных материалов с металлической матрицей по сравнению с обычным (неусиленным) металлом являются: повышенная прочность, повышенная жесткость, повышенное сопротивление износу, повышенное сопротивление ползучести.

Композиционные материалы на основе керамики. Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам — материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.

Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники — это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Автор статьи: Абушенко Александр Викторович

КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

Композиционные материалы – это материалы, состоящие из двух или несколько компонентов, которые отличаются по своей природе или химическому составу, где компоненты объединены в единую монолитную структуру с границей раздела между компонентами, оптимальное сочетание которых позволяет получить комплекс физико-химических и механических свойств, отличающихся от комплекса свойств компонентов.

В широком смысле понятие «композиционный материал» включает в себя любой материал с гетерогенной структурой, т.е. структурой, состоящей из двух и более фаз.

Первым создателем композиционных материалов была сама природа. Множество природных конструкций (стволы деревьев, кости животных, зубы людей и т.д.) имеют характерную волокнистую структуру. Она состоит из сравнительно пластичного матричного вещества и более твердых и прочных веществ, имеющих форму волокон. Например: древесина – это композиция, состоящая из пучков высокопрочных целлюлозных волокон трубчатого строения, связанных между собой матрицей из органического вещества (лигнина), придающего древесине поперечную жесткость.

Примерами композиционных материалов могут быть и такие природные образования, как минералы. Нефрит – состоит из плотноупакованных игольчатых кристаллов, связанных друг с другом на поверхностях раздела. Такая структура обеспечивает высокую вязкость нефрита и поэтому различные племена использовали его как материал для изготовления топоров.

Общая характеристика композиционных материалов

И их классификация

Внимание к композиционным материалам в последнее время непрерывно возрастает. Это объясняется тем, что возможности повышения механических свойств традиционных конструкционных материалов в значительной степени исчерпаны.

Композиционные материалы по удельным прочности и жесткости, прочности при высокой температуре, сопротивлению усталостному разрушению и другим свойствам значительно превосходят все известные конструкционные сплавы. Уровень заданного комплекса свойств проектируется заранее и реализуется в процессе изготовления материала.

Рис. 20.1. Удельные прочность и жесткость стали, титановых, алюминиевых сплавов и композитов (КАС-1, ВКА-1Б).

Свойства композиционных материалов в основном зависят от физико-механических свойств компонентов и прочности связи между ними.

Композитные материалы — что это такое?

Отличительной особенностью данных материалов является то, что в них проявляются достоинства компонентов, а не их недостатки. Вместе с тем композиционным материалам присущи свойства, которыми не обладают отдельно взятые компоненты, входящие в их состав. Для оптимизации свойств композиции выбирают компоненты с резко отличающимися, но дополняющими друг друга свойствами.

По своему составу композиционные материалы состоят из основы (матрицы) и наполнителя (упрочнителя, армирующего компонента).

Основой (матрицей) композиционных материалов служат металлы или сплавы, полимеры, углеродные и керамические материалы.

Матрица связывает композицию, придает ей форму. От свойств матрицы в значительной степени зависят технологические режимы получения композиционных материалов и такие важные эксплуатационные характеристики как: рабочая температура, сопротивление усталостному разрушению, плотность и удельная прочность.

Созданы композиционные материалы с комбинированными матрицами, состоящими из чередующихся слоев (двух и более) различного химического состава. Такие материалы называют полиматричными. Для полиматричных материалов характерен более обширный перечень полезных свойств. Например, использование в качестве матрицы наряду с алюминием титана увеличивает прочность композиционных материалов в направлении, перпендикулярном оси волокон. Алюминиевые слои в матрице способствуют уменьшению плотности материала.

В матрице равномерно распределен другой компонент, называемый арматурой или армирующим компонентом, или, иногда наполнителем. Понятие «армирующий» означает – «введенный в материал с целью изменения свойств», но не несет в себе однозначного понятия «упрочняющий».

Армирующие компоненты должны обладать высокими прочностью, твердостью, и модулем упругости. По этим свойствам они значительно превосходят матрицу.

Свойства композиционных материалов зависят также от формы или геометрии, размера, количества и характера распределения наполнителя (схемы армирования).

По форме наполнители разделяют на три основные группы:

1. Нульмерные наполнители, имеющие в трех измерениях очень малые размеры одного порядка (частицы);

2. Одномерные наполнители имеют малые размеры в двух направлениях и значительно превосходящий их размер в третьем измерении (волокна);

3. Двухмерные наполнители имеют два размера соизмеримых с размером композиционного материала и значительно превосходят третий (пластины, ткань).

Нитевидная форма армирующих элементов имеет как положительные так и отрицательные стороны. Преимущество их состоит в высокой прочности и возможности создать упрочнение только в том направлении, в котором это требуется конструктивно. Недостаток такой формы заключается в том, что волокна способны передавать нагрузку только в направлении своей оси, тогда как в перпендикулярном направлении упрочнения нет, а в некоторых случаях может проявиться даже разупрочнение.

Наполнители, используемые в качестве арматуры, должны иметь следующие свойства: высокую температуру плавления, малую плотность, высокую прочность во всем интервале рабочих температур, технологичность, минимальную растворимость в матрице, высокую химическую стойкость, отсутствие токсичности при изготовлении и в эксплуатации.

Композиционные материалы, которые содержат два и более различных наполнителя, называют полиармированными.

Если композиционные материалы состоят их трех и более компонентов, они называются гибридными.

Композиционные материалы классифицируются по нескольким основным признакам:

а) материалу матрицы и армирующих компонентов;

б) структуре: геометрии и рапсоложению компонентов;

в) методу получения;

г) области применения.

Рассмотрим некоторые классификационные характеристики композиционных материалов.

Дата добавления: 2017-01-26; просмотров: 3573;

Похожие статьи:

Волокнистые композиционные материалы представляют собой относительно мягкую матрицу, которая связывает прочные волокна (Рис.59.). Основную механическую нагрузку несут волокна, а матрица равномерно распределяет её.

Композитные материалы — особенности свойств и основные виды

Упрочняющие (или армирующие) волокна могут быть диаметром d = 10 нм – 100 мкм , как длинные, так и короткие. Если отношение длины волокна к диаметру (l/d) = 10 – 1000, то такие волокна называются дискретными. Если (l/d) > 1000 , то такие волокна называют непрерывными. В процентном содержании волокна могут составлять 20–80% массы материала.

В зависимости от способа укладки волокон различают структуры композиционных материалы:

1. Однонаправленные – волокна укладываются вдоль одного направления.

2. Сотканные – волокна уложены перекрестно в двух направлениях, как в ткани..

3. Объемные –пространственная укладка волокон. Волокна сшиваются в объёмную структуру в трёх и более направлениях.

Сотканные и слоистые материалы анизотропны, прочность вдоль слоев волокон заметно больше, чем в поперечном направлении. Наибольшей прочностью обладают материалы с объемной структурой. Они почти изотропные, т.е. в разных направлениях свойства одинаковы.

В качестве армирующих волокон используются сверхпрочные борные волокна, углеродные, карбидные, нитридные, оксидные и т.д. Из металлических материалов для армирования применяют проволоку из вольфрама, молибдена, углеродистой стали.

В качестве матрицы используются как металлы, так и не металлы, органические и не органические соединения – все подряд. При этом материалы выбираются таким образом, чтобы комбинировать и получить определенные сочетания положительных свойств матрицы и армирующих соединений.

Рассмотрим примеры волокнистых КМ композиционных материалов.

· Бор – алюминий

Алюминиевая матрица . Алюминий мягкий материал. Борные волокна – это прочный материал, но хрупкий. В сочетании эти два материала дают вязкий и прочный композиционный материал. С пределом прочности σв = 1300 МПа. Т.е. по прочности как легированная сталь, по весу как алюминий.

· Алюминий – сталь

Алюминиевая матрица. Стальные волокна. Обладает пределом прочности σв = 1600 МПа. Т.е. прочность ещё выше, но значительно легче стали.

· Никель-вольфрам

Никель – матрица, вольфрамовая нить – армирующий материал. Это жаростойкий материал. Имеет прочность σв = 700 МПа. Высокая прочность при высоких температурах.

· Углепласт

Углеродные волокна , которые пропитываются связующим – полимерной смолой.

После полимеризации смолы получается сверхпрочный материал углепласт σв = 1000 МПа. При этом он чрезвычайно легкий ρ = 1500 кг/см3, легче алюминия, сохраняет прочность при кратковременном нагреве до температуры 2200 ºС .

· Борноволокнистые материалы

Для армирования используют борные волокна. Такой КМ обладают еще большей прочностью σв = 1300 МПа, легкий ρ = 2000 кг/см3, выдерживает длительный нагрев до температуры tраб = 300 ºС.

Композиционные материалы благодаря своим уникальным свойствам все более широко используется в самых разнообразных областях. Это современные перспективные материалы, которые востребованы в первую очередь авиационной, автомобильной , ракетной технике. Их стоимость снижается и потому они все шире и чаще используются для изготовления легких конструкций и деталей в строительстве, машиностроении, бытовой техники и т.д..

· Контрольные вопросы

1. Какие материалы называют композиционными?

2. Строение дисперсноупрочнёных композиционных материалов.

3. Принципы упрочнения волокнистых материалов.

4. Способы укладки волокон.

5. Преимущества композиционных материалов?

6. Приведите примеры композиционных материалов.

Список литературы

  1. Шарипов И.З. Физика металлов:учебное пособие для студентов вузов–Уфимский гос.авиац.техн. ун-т, Уфа, 2005 – 89 с.
  2. Материаловедение. Технология конструкционных материалов:учебное пособие для студентов вузов под ред. Чередниченко. – 2-е изд. , перераб. – М.: Омега-Л, 2006. – 752 с.
  3. Колесов С. Н., Колесов И. С. Материаловедение и технология конструкционных материалов : учебник для студентов вузов– Изд. 2-е, перераб. и доп. — М.: Высшая школа, 2007 .— 536 с.
  4. Материаловедение:Учебник для высших техни­ческих учебных заведений. Б. Н. Арзамасов, И. И. Сидорин, Г. Ф. Косолапов и др.; Под общ. ред. Б. Н. Арзамасова.— 7-е, стереотип..-М.: МГТУ им. Н. Э. Баумана, 2005. – 648 с.
  5. Материаловедение и технология металлов. Под ред. Фетисова Г.П. – М.: Высшая школа, 2001. – 638 с.
  6. Белоус М.В. Физика металлов:Учебное пособие для студентов вузов. – Киев: Вища школа,1986.-343с.:ил.;22см.
  7. Ермаков С.С. Физика металлов и дефекты кристаллического строения:Учебное пособие для студентов вузов. – Ленингр. политехн. ин-т им. М.И.Калинина.-Л.:Изд-во ЛГУ,1989.-271с.:ил.;22см.
  8. Епифанов Г. И. Физика твердого тела. Учеб. пособие для втузов. Изд. 2-е, перераб. и доп. М., «Высш. школа», 1977. 288 с. с ил.
  9. Новиков И.И. Дефекты кристаллического строения металлов.Учеб.пособие для вузов / 3-е изд., перераб. и доп.-М.:Металлургия, 1983 . – 232 с.
  10. Курс материаловедения в вопросах и ответах: учебное пособие для студентов высших учебных заведений / С. И. Богодухов, В. Ф. Гребенюк, А. В. Синюхин. -Изд. 2-е, испр. и доп..-М.: Машиностроение, 2005. – 288 с.
  11. Ржевская С. В. Материаловедение: учебник для вузов / -Изд. 4-е, перераб и доп..-М.: Логос, 2004. – 424 с.
  12. Лахтин Ю. М., Леонтьева В. П. Материаловедение:Учебник для высших технических учебных заведений. —3-е изд., перераб. и доп. — М.: Ма­шиностроение, 1990. – 528 с.
  13. Журавлева Л. В. Электроматериаловедение:учебник /-2-е изд., стереотип..-М.: Academia, 2004. ­­– 312 с.
  14. Технология конструкционных материалов. Под ред. Дальского А.М. М.: Машиностроение, 1993. – 448 с.
  15. Коровский Ш. Я. Авиационное электрорадиоматериаловедение., М.:«Машиностроение», 1972 – 356 c.
  16. Пасынков В. В., Сорокин В. С. Материалы электроннойтехники: Учебник для студ. вузов. 3-е изд. — СПб.: Издательство «Лань», 2001. — 368 с.
  17. Гусев В. Г., Гусев Ю. М. Электроника: Учеб. пособие.— 2-е изд., перераб. и доп.— М.: Высш. школа. 1991.— 622 с.
  18. Лачин В. И., Савёлов Н. С. Электроника: Учеб. пособие. — Ростов н/Д: изд-во «Феникс», 2000. — 448 с.
  19. Тареев В.М. Электрорадиоматериаловедение. —М.: Машиностроение, 1986- 384 с.
  20. Электротехнические и конструкционные материалы. Под.ред.. Филикова В.А – М.: Мастерство: Высшая школа, 2000.– 280 c.
  21. Калинин Н.Н., Скибинский Г.Л., Новиков П.П. Электрорадиоматериалы. –М.:Высшая школа, 1981. –294 с.

Учебное издание

ШАРИПОВ Ильгиз Зуфарович

МАТЕРИАЛОВЕДЕНИЕ

Редактор З.Г. Кашаева

Подписано в печать 18.04.2008. Формат 60´84 1/16.

Усл. печ. л. 4,7. Усл. кр.-отт. 4,7. Уч.-изд. л. 4,6. Гарнитура Times New Roman. Тираж 100 экз. Заказ №

ГОУ ВПО Уфимский государственный авиационный технический университет

Редакционно — издательский комплекс УГАТУ

450000. Уфа-центр, ул. К. Маркса, 12

⇐ Предыдущая35363738394041424344

Дата публикования: 2014-11-18; Прочитано: 1275 | Нарушение авторского права страницы

Современные технологии требуют появления все новых и новых композитных материалов со специальными свойствами, находя им широкое применение в различной продукции. Одним из таких композитный материалов является – карбон. Уникальные свойства карбона позволяют использовать его для производства и тюнинга различных транспортных средств, яхт и морских судов, в авиастроении и космической техники. Свое рождение карбон начал с исследований Эдисона, именно он в 1880 году ведя поиск материала для спирали лампы накаливания исследовал уклеволокно являющееся основой карбона. Слабое развитие технического прогресса в то время не дало возможности полностью раскрыть свойства нового материала и найти ему достойное применение. Только выход человечества в космос и использование карбонового углеволокна при строительстве космических кораблей NASA раскрыло перед карбоном все двери. Основу композитного материала карбон тонкие углеродные нити сломать практически невозможно это гарантирует высокая прочность, износостойкость и жесткость углеродной нити. Используя нить уклеволокна в качестве одного армирующего элемента и нити резины или кевлара в качестве второго армирующего элемента связав их эпоксидными смолами можно получить карбоновое полотно. Особенностью углепластика является разнонаправленность физических свойств поэтому для получения однородного композитного материала армирующие волокна переплетают, образуя специальную сетку именно она и придает привлекательный вид карбону. Создавая армирующую сетку нити, всегда переплетают под заданным углом, при создании следующего слоя угол меняют. Для получения карбона толщиной 1 мм применяют 3-4 слоя переплетенных армирующих нитей, придавая композитному материалу заданную прочность и твердость.

Технология получения непосредственно самих нитей углеволокна довольно сложна, можно получить органические волокна углепластика используя автоклав высокого давления методом химической осадкой углерода или выращивать кристаллы нити углепластика в световой дуге. Современный автоклав промышленный более производителен и метод автоклавного формирования углеволокна более технологичен.

В качестве исходного материала для получения нитей углеволокна берут волокна полиакрилонитрила, их окисляют при температуре 250°C в течение 24 часов в воздушной среде. Далее волокна помещают в автоклав горизонтальный с рабочим объемом, заполненным инертным газом, автоклав электрический производит длительный высокотемпературный нагрев волокон в пределах 800-1500°C обеспечивая карбонизацию углеволокна. Такая термическая обработка обеспечивает пиролиз углеволокна в нем убывают летучие соединения, а сами волокнах образуют новые связи. Такая дилительная термическая обработка при автоклавировании исходный материал полностью обугливается и получается готовый продукт — нитей углеволокна.

astgift.ru


Смотрите также