Спираль на электроплитку


Как сделать простую электроплитку: фото и описание изготовления самоделки

Самодельная электроплитка. Как сделать электроплитку из кирпича: фото и описание.

Самодельная электроплитка всегда сгодится на даче или в гараже, с её помощью можно приготовить или разогреть пищу, подогреть воду или использовать как обогреватель. Для этого совсем не обязательно электроплитку покупать, её можно сделать своими руками из кирпича и спирали из нихрома.

Изготовление электроплитки

Чтобы изготовить электроплитку нам понадобятся такие материалы:

  • Кирпич (желательно огнеупорный).
  • Спираль из нихрома длиной примерно 30 см.
  • Провод с вилкой.
  • Два винта шурупа и по две гайки и шайбы на каждый.

Берём кирпич и любым подручным способом с одной стороны делаем параллельные канавки, можно воспользоваться болгаркой с отрезным кругом или большим грубым напильником.

Глубина канавок должна быть на 5 мм больше толщины спирали, таким образом, спираль будет полностью погружаться в канавки с запасом. Важно чтобы спираль не прикасалась потом к кастрюле.

Когда канавки будут готовы, делаем отверстия под винты в боковой части кирпича, для этого понадобится дрель со сверлом с победитовой напайкой соответствующего диаметра.

Вставляем в отверстия винты, их также можно уплотнить кусочками стеклоткани, навинчиваем на резьбу шайбы и гайки.

Берём кусок нитки и замеряем пазы в кирпиче, чтобы узнать примерную длину для спирали. Берём спираль за края и равномерно растягиваем на такую же длину.

Укладываем спираль в пазы, при этом по краям кирпича пружину растягиваем. Подключаем концы спирали к клеммам и фиксируем шайбами и гайками. В местах, где спираль подходит к клеммам распрямляем спираль, чтобы клеммы не грелись.

Подключаем к клеммам шнур с вилкой и самодельная электроплитка готова.

Но следует помнить, что такая плитка пожароопасна, её нельзя размещать возле легко воспламеняемых предметов и оставлять без присмотра.

Поскольку здесь открытая спираль, всегда есть вероятность получить удар током, поэтому ставить и снимать посуду с плитки, нужно только когда она не включена в сеть. Поставили чайник на плиту и только потом включили в розетку, закипела вода в чайнике – сначала нужно выключить плитку из розетки, а уже потом снимать с плиты чайник.

Плитку можно использовать в качестве обогревателя, но следует помнить, что открытая спираль сжигает в помещении кислород и закрывать наглухо помещение ни в коем случае нельзя, только с открытой форточкой. По той же причине нельзя оставлять включённую плитку в маленьком помещении на ночь.

(3 оценок, среднее: 4,67 из 5) Загрузка...

sam-stroitel.com

Самодельная ретро электрическая плита

Самодельная ретро электрическая плитаВот такую мощную электрическую плиту, которой пользовались для приготовления пищи и не только, большая часть населения Советских людей в ХХ веке, можно сделать самому примерно за один час.Хотя это уже пережиток старого, но кто знает, может быть кому то еще пригодится. Благодаря открытой спирали большой мощности и минимальному зазору до нагреваемой поверхности, нагрев и закипание происходит за достаточно короткое время, а это уже есть своеобразная экономия электроэнергии.

Пункт 1. Необходимые материалы и инструменты.

Материалы:

• Два шамотных кирпича.• Профиль металлический оцинкованный П - образный.• Спираль накала или нихромовая проволока Д=0.5-1 мм.• Маленькая болгарка, алмазный диск и диск по металлу.• Самодельное маленькое зубило, молоток.• Дрель, победитовое сверлом Д=3-5 мм., сверло по металлу Д=3,3 мм.• Заклепочник с заклепками.• Провод с вилкой.• Диод на 20-50А 400в. (опционально).

Пункт 2. Спираль накала.

Для нагревательного элемента нам потребуется готовая спираль накала из нихромовой проволоки, её можно купить на рынке, хозяйственных магазинах, 1000 мелочей, или же при наличии нихромовой проволоки изготовить самостоятельно (ССЫЛКА - Приспособление для намотки спирали). Готовая спираль должна быть на 1,5-2,5 кВт.

Пункт 3 . Чертеж лабиринта.

Спираль накаливания необходимо равномерно разместить на площадке из двух кирпичей, для этого сперва чертим чертеж лабиринта на бумаге и закрашиваем ту часть где будет лежать сама спираль.Затем берется два шамотных кирпича, если они не новые и грязные, их необходимо почистить, вымыть щеткой. [/centerРасполагаем два кирпича на ровной поверхности, накладываем сверху бумажный образец дорожек, прижимаем рукой и отгибая поочередно края листа, намечаем все углы лабиринта на кирпичи. Убираем бумагу и карандашом полностью прорисовываем лабиринт как на бумаге.

[center]

Для того чтобы не запутаться во время работы болгаркой и не прорезать неправильный пропил, дополнительно закрашиваем мелом лабиринт, теперь он виден очень хорошо.

Пункт 4. Обработка кирпича.

Одеваем защитные очки или маску, берем болгарку с алмазным диском и делаем пропилы по линиям, глубиной 1 см., стараемся не выходить за приделы пересечения угловых линий. После полного прохода контура дорожек лабиринта, начинаем выборку сердцевины дорожек, перемещая диск от пропила к пропилу, постепенно углубляясь и расширяя канавки до дна 1см.За 15-20 минут весь лабиринт будет готов, боковиной диска снимем фаску по краю кирпичей.Теперь надо удалить сердцевину угловых участков, где болгарка не достала. Для этого нужно тонкое самодельное зубило, сделанное например из обломка сверла Д=10 мм. Не сильными ударами молотком по зубилу, небольшими сколами, понемногу выкрашиваем кирпич, главное не перестараться и не расколоть кирпич. Все это не сложно, материал достаточно легок в обработке и времени займет не более 10-15 минут.Теперь можно примерить спираль на место, чтобы увидеть все оставшиеся косяки, при необходимости дорабатываем дорожки.Для вывода концов спирали просверлим два отверстия. Победитовым сверлом на небольших оборотах (без вибрации), с обильным поливом водой и очень частым выниманием сверла для смачивания всего канала водой, сверлим сквозные отверстия.После просверливания отверстий хорошо промываем кирпичи струей воды и оставляем их сохнуть.

Пункт 5. Основание-подставка.

Для изготовления основания-подставки используем металлический профиль, одного метра будет достаточно, распускаем его на всю длину вдоль, чтобы получилось два одинаковых уголка.Замеряем ширину кирпичной конструкции, прибавляем по 5 мм. на каждую сторону, и переносим эти размеры на отрезок уголка. Делаем разрезы по отметкам и загибаем на 90 градусов все четыре сторон.Должен получиться квадрат в который легко вставляются оба кирпича.Для скрепления углов и придания жесткости используем заклепки. Просверливаем по углам сверлом Д=3,3 мм. отверстия и скрепляем с помощью заклепочника. Длину заклепок желательно использовать минимальную, либо с помощью молотка и наковальни дополнительно расплющиваем их.Осталось приделать ножки, отмечаем на оставшемся уголке четыре 10 см. отрезка, сразу просверливаем по одному отверстию под заклепки и отрезаем. Приставляем ножки на место и сверлим отверстия под заклепки в рамке. Приклепываем все четыре ножки на одну заклепку. Ставим платформу на свои уже ноги и поправляя ровно каждую ногу, просверливаем по второму отверстию под заклепку, устанавливаем вторые заклепки. Дополнительно расплющиваем заклепки молотком, теперь все жестко и ровно стоит на своих ногах.Можно закладывать кирпичи внутрь, если заклепки все-таки немного мешают, стачиваем болгаркой боковины кирпичей на небольшой клин вниз и устанавливаем наместо.

Пункт 6. Установка спирали.

Окончания спирали на 10 см. распрямляем и просовываем в отверстия. С низу присоединяем провод с вилкой сечением не менее 2,5 мм2.Равномерно растягивая спираль и распределяем ее в лабиринте, должна получится небольшая натяжка спирали.

Пункт 7. Включение и испытание.

Подключаем плиту в розетку, проводка и защитный автомат должны быть исправными и рассчитанными на мощность не менее 3кВт.После полного прогрева, смотрим силу накала спиралей, она должна быть не сильно яркой, а в районе темного оранжевого-красного. Если накал ярко оранжевый-желтый, значит надо понизить ток, это можно сделать с помощью одного диода на 20-50А, который срежет один период напряжения, что вполне нам достаточно.

Схема понижения накала.

У меня не оказалось подходящего диода, поэтому поставил два параллельных по 10А, что дало 20А. Радиатор в принципе не нужен, нагрев диодов всего на 10 гр. больше окружающей среды. Схему обязательно спрятать внутрь изолированного корпуса с вентиляционными отверстиями.Теперь когда в беседке лень разжигать огонь в мангале, я пользуюсь такой плиткой и быстро готовлю закуску! Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Самодельная ретро электроплита.

Вот такую мощную электрическую плиту, которой пользовались для приготовления пищи и не только, большая часть населения Советских людей в ХХ веке, можно сделать самому примерно за один час.

Хотя это уже пережиток старого, но кто знает, может быть кому то еще пригодится. Благодаря открытой спирали большой мощности и минимальному зазору до нагреваемой поверхности, нагрев и закипание происходит за достаточно короткое время, а это уже есть своеобразная экономия электроэнергии.

Пункт 1. Необходимые материалы и инструменты.

Материалы:

  • Два шамотных кирпича.
  • Профиль металлический оцинкованный П — образный.
  • Спираль накала или нихромовая проволока Д=0.5-1 мм.
  • Маленькая болгарка, алмазный диск и диск по металлу.
  • Самодельное маленькое зубило, молоток.
  • Дрель, победитовое сверлом Д=3-5 мм., сверло по металлу Д=3,3 мм.
  • Заклепочник с заклепками.
  • Провод с вилкой.
  • Диод на 20-50А 400в. (опционально).

Пункт 2. Спираль накала.

Для нагревательного элемента нам потребуется готовая спираль накала из нихромовой проволоки, её можно купить на рынке, хозяйственных магазинах, 1000 мелочей, или же при наличии нихромовой проволоки изготовить самостоятельно (-). Готовая спираль должна быть на 1,5-2,5 кВт.

Пункт 3 . Чертеж лабиринта.

Спираль накаливания необходимо равномерно разместить на площадке из двух кирпичей, для этого сперва чертим чертеж лабиринта на бумаге и закрашиваем ту часть где будет лежать сама спираль.

Затем берется два шамотных кирпича, если они не новые и грязные, их необходимо почистить, вымыть щеткой.

Располагаем два кирпича на ровной поверхности, накладываем сверху бумажный образец дорожек, прижимаем рукой и отгибая поочередно края листа, намечаем все углы лабиринта на кирпичи.

Убираем бумагу и карандашом полностью прорисовываем лабиринт как на бумаге.

Для того чтобы не запутаться во время работы болгаркой и не прорезать неправильный пропил, дополнительно закрашиваем мелом лабиринт, теперь он виден очень хорошо.

Пункт 4. Обработка кирпича.

Одеваем защитные очки или маску, берем болгарку с алмазным диском и делаем пропилы по линиям, глубиной 1 см., стараемся не выходить за приделы пересечения угловых линий.

После полного прохода контура дорожек лабиринта, начинаем выборку сердцевины дорожек, перемещая диск от пропила к пропилу, постепенно углубляясь и расширяя канавки до дна 1см.

За 15-20 минут весь лабиринт будет готов, боковиной диска снимем фаску по краю кирпичей. Теперь надо удалить сердцевину угловых участков, где болгарка не достала. Для этого нужно тонкое самодельное зубило, сделанное например из обломка сверла Д=10 мм.

Не сильными ударами молотком по зубилу, небольшими сколами, понемногу выкрашиваем кирпич, главное не перестараться и не расколоть кирпич.

Все это не сложно, материал достаточно легок в обработке и времени займет не более 10-15 минут.

Теперь можно примерить спираль на место, при необходимости дорабатываем дорожки.

Для вывода концов спирали просверлим два отверстия. Победитовым сверлом на небольших оборотах (без вибрации), с обильным поливом водой и очень частым выниманием сверла для смачивания всего канала водой, сверлим сквозные отверстия.

После просверливания отверстий хорошо промываем кирпичи струей воды и оставляем их сохнуть.

Пункт 5. Основание-подставка.

Для изготовления основания-подставки используем металлический профиль, одного метра будет достаточно, распускаем его на всю длину вдоль, чтобы получилось два одинаковых уголка.

Замеряем ширину кирпичной конструкции, прибавляем по 5 мм. на каждую сторону, и переносим эти размеры на отрезок уголка. Делаем разрезы по отметкам и загибаем на 90 градусов все четыре сторон.

Должен получиться квадрат в который легко вставляются оба кирпича.

Для скрепления углов и придания жесткости используем заклепки. Просверливаем по углам сверлом Д=3,3 мм. отверстия и скрепляем с помощью заклепочника.

Длину заклепок желательно использовать минимальную, либо с помощью молотка и наковальни дополнительно расплющиваем их.

Осталось приделать ножки, отмечаем на оставшемся уголке четыре 10 см. отрезка, сразу просверливаем по одному отверстию под заклепки и отрезаем.

Приставляем ножки на место и сверлим отверстия под заклепки в рамке. Приклепываем все четыре ножки на одну заклепку.

Ставим платформу на свои уже ноги и поправляя ровно каждую ногу, просверливаем по второму отверстию под заклепку, устанавливаем вторые заклепки.

Дополнительно расплющиваем заклепки молотком, теперь все жестко и ровно стоит на своих ногах.

Можно закладывать кирпичи внутрь, если заклепки все-таки немного мешают, стачиваем болгаркой боковины кирпичей на небольшой клин вниз и устанавливаем на место.

Пункт 6. Установка спирали.

Окончания спирали на 10 см. распрямляем и просовываем в отверстия.

С низу присоединяем провод с вилкой сечением не менее 2,5 мм2.

Равномерно растягивая спираль и распределяем ее в лабиринте, должна получится небольшая натяжка спирали.

Пункт 7. Включение и испытание.

Подключаем плиту в розетку, проводка и защитный автомат должны быть исправными и рассчитанными на мощность не менее 3кВт.

После полного прогрева, смотрим силу накала спиралей, она должна быть не сильно яркой, а в районе темного оранжевого-красного. Если накал ярко оранжевый-желтый, значит надо понизить ток, это можно сделать с помощью одного диода на 20-50А, который срежет один период напряжения, что вполне нам достаточно.

Схема понижения накала спирали.

У меня не оказалось подходящего диода, поэтому поставил два параллельных по 10А, что дало 20А. Радиатор в принципе не нужен, нагрев диодов всего на 10 гр. больше окружающей среды.

Схему обязательно спрятать внутрь изолированного корпуса с вентиляционными отверстиями.

Теперь когда в беседке лень разжигать огонь в мангале, я пользуюсь такой плиткой и быстро готовлю закуску!

xn----8sbekcdvpihw5ac.xn--p1ai

Электрические нагревательные элементы, ТЭНы, виды, конструкции, подключение и проверка

Электрические нагревательные элементы применяются в бытовой и промышленной технике. Применение различных нагревателей известно всем. Это электрические плиты, жарочные шкафы и духовки, электрокофеварки, электрические чайники и отопительные приборы всевозможных конструкций.

Электрические водонагреватели, чаще именуемые бойлерами, тоже содержат нагревательные элементы. Основой многих нагревательных элементов служит проволока с высоким электрическим сопротивлением. И чаще всего эта проволока изготовлена из нихрома.

Открытая нихромовая спираль

Самым старым нагревательным элементом является, пожалуй, обычная нихромовая спираль. Когда-то давно, в ходу были самодельные электрические плитки, кипятильники для воды и обогреватели типа «козёл». Имея под рукой нихромовый провод, которым можно было «разжиться» на производстве, изготовить спираль требуемой мощности не представляло никаких проблем.

Конец провода нужной длины вставляется в пропил воротка, сам провод пропускается между двумя деревянными брусками. Тиски нужно зажать так, чтобы вся конструкция держалась, как показано на рисунке. Усилие зажима должно быть таким, чтобы провод проходил сквозь бруски с некоторым усилием. Если усилие зажима будет велико, то провод попросту оборвется.

Рисунок 1. Навивка нихромовой спирали

Вращением воротка проволока протаскивается сквозь деревянные бруски, и аккуратно, виток к витку, укладывается на металлический стержень. В арсенале электриков был целый набор воротков различного диаметра от 1,5 до 10 мм, что позволяло навивать спирали на все случаи жизни.

Известно было, какого диаметра провод и какая длина требуется для намотки спирали нужной мощности. Эти магические числа до сих пор можно найти в сети интернет. На рисунке 2 показана таблица, где приведены данные о спиралях различной мощности при напряжении питания 220В.

Рисунок 2. Расчет электрической спирали нагревательного элемента (для увеличения нажмите на рисунок)

Здесь все просто и понятно. Задавшись требуемой мощностью и диаметром нихромового провода, имеющимся под рукой, остается только отрезать кусок нужной длины и навить его на оправку соответствующего диаметра. При этом в таблице указана длина получившейся спирали. А что делать, если имеется провод с диаметром не указанным в таблице? В этом случае спираль придется просто рассчитать.

Как рассчитать нихромовую спираль

При необходимости рассчитать спираль достаточно просто. В качестве примера приведен расчет спирали из нихромовой проволоки диаметром 0,45мм (такого диаметра в таблице нет) мощностью 600Вт на напряжение 220В. Все расчеты выполняются по закону Ома.

О том, как перевести амперы в ватты и, наоборот, ватты в амперы:

Сколько в ампере ватт, как перевести амперы в ватты и киловатты

Сначала следует рассчитать ток, потребляемый спиралью.

I = P/U = 600/220 = 2,72 A

Для этого достаточно заданную мощность поделить на напряжение и получить величину тока, проходящего через спираль. Мощность в ваттах, напряжение в вольтах, результат в амперах. Все согласно системе СИ.

По известному теперь току рассчитать требуемое сопротивление спирали достаточно просто: R = U/I = 220/2,72 = 81 Ом

Формула для подсчета сопротивления проводника R=ρ*L/S,

где ρ – удельное сопротивление проводника (для нихрома 1.0÷1.2 Ом•мм2/м), L - длина проводника в метрах, S – сечение проводника в квадратных миллиметрах. Для проводника диаметром 0,45 мм сечение составит 0,159 мм2.

Отсюда L = S * R / ρ = 0.159 * 81 / 1.1 = 1170 мм, или 11,7 м.

В общем, получается не столь уж сложный расчет. Да собственно и изготовление спирали не так уж и сложно, что, несомненно, является достоинством обычных нихромовых спиралей. Но это достоинство перекрывается множеством недостатков, присущих открытым спиралям.

Прежде всего, это достаточно высокая температура нагрева – 700…800˚C. Нагретая спираль имеет слабое красное свечение, случайное прикосновение к ней может причинить ожог. Кроме того возможно поражение электрическим током. Раскаленная спираль выжигает кислород воздуха, привлекает к себе пылинки, которые выгорая, дают весьма неприятный аромат.

Но главным недостатком открытых спиралей следует считать их высокую пожароопасность. Поэтому пожарная охрана попросту запрещает применение обогревателей с открытой спиралью. К таким обогревателям, прежде всего, относится, так называемый «козел», конструкция которого показана на рисунке 3.

Рисунок 3. Самодельный обогреватель «козел»

Вот такой вот получился дикий «козел»: сделан он нарочито небрежно, просто, даже очень плохо. Пожара с таким обогревателем ждать придется недолго. Более совершенная конструкция подобного отопительного прибора показана на рисунке 4.

Рисунок 4. «Козел» домашний

Нетрудно видеть, что спираль закрыта металлическим кожухом, именно это предотвращает прикосновение к разогретым токоведущим частям. Пожароопасность такого устройства намного меньше, чем показанного на предыдущем рисунке.

Смотрите по этой теме: Почему опасны «козел» и самодельный кипятильник

Когда-то давно в СССР выпускались обогреватели-рефлекторы. В центре никелированного отражателя имелся керамический патрон, в который наподобие лампочки с цоколем E27, вворачивался нагреватель мощностью 500Вт. Пожароопасность такого рефлектора тоже очень высока. Ну, вот как-то не задумывались в те времена, к чему может привести использование таких обогревателей.

Рисунок 5. Обогреватель рефлекторного типа

Совершенно очевидно, что различные обогреватели с открытой спиралью можно, вопреки требованиям пожарной инспекции, использовать лишь под неусыпным присмотром: ушел из помещения – выключи обогреватель! Еще лучше просто отказаться от использования обогревателей подобного типа.

Нагревательные элементы с закрытой спиралью

Чтобы избавиться от открытой спирали, были изобретены Трубчатые Электрические Нагреватели – ТЭНы. Конструкция ТЭНа показана на рисунке 6.

Рисунок 6. Конструкция ТЭНа

Нихромовая спираль 1 спрятана внутри тонкостенной металлической трубки 2. Спираль изолирована от трубки наполнителем 3 с высокой теплопроводностью и высоким электрическим сопротивлением. В качестве наполнителя чаще всего применяется периклаз (кристаллическая смесь окиси магния MgO, иногда с примесями других окислов).

После заполнения изолирующим составом трубку опрессовывают, и под большим давлением периклаз превращается в монолит. После такой операции спираль жестко фиксируется, поэтому электрический контакт с корпусом – трубкой исключен полностью. Конструкция получается настолько прочной, что любой ТЭН можно изгибать, если того требует конструкция отопительного прибора. Некоторые ТЭНы имеют весьма причудливую форму.

Спираль соединяется с металлическими выводами 4, которые выходят наружу через изоляторы 5. Подводящие провода присоединяются к резьбовым концам выводов 4 с помощью гаек и шайб 7. Крепление ТЭНов в корпусе устройства осуществляется при помощи гаек и шайб 6, обеспечивающих, при необходимости, герметичность соединения.

При соблюдении условий эксплуатации подобная конструкция достаточно надежна и долговечна. Именно это и привело к весьма широкому применению ТЭНов в устройствах различного назначения и конструкции.

По условиям эксплуатации ТЭНы делятся на две большие группы: воздушные и водяные. Но это просто такое название. На самом деле воздушные ТЭНы предназначены для работы в различных газовых средах. Даже обычный атмосферный воздух является смесью нескольких газов: кислорода, азота, углекислого газа, имеются даже примеси аргона, неона, криптона и т.д.

Воздушная среда бывает самой разнообразной. Это может быть спокойный атмосферный воздух или поток воздуха, движущийся со скоростью до нескольких метров в секунду, как в тепловентиляторах или тепловых пушках.

Разогрев оболочки ТЭНа может достигать 450 ˚C и даже более. Поэтому для изготовления внешней трубчатой оболочки применяются различные материалы. Это может быть обычная углеродистая сталь, нержавеющая сталь или жаропрочная, жаростойкая сталь. Все зависит от окружающей среды.

Для улучшения теплоотдачи некоторые ТЭНы снабжаются ребрами на трубках в виде навитой металлической ленты. Такие нагреватели называются оребренными. Применение таких элементов наиболее целесообразно в движущейся воздушной среде, например, в тепловентиляторах и тепловых пушках.

Водяные ТЭНы также применяются не обязательно в воде, это общее название различных жидкостных сред. Это может быть масло, мазут и даже различные агрессивные жидкости. Жидкостные ТЭНы применяются в электрических котлах, дистилляторах, электрических опреснителях морской воды и просто в титанах для кипячения питьевой воды.

Теплопроводность и теплоемкость воды намного выше, нежели у воздуха и других газовых сред, что обеспечивает, по сравнению с воздушной средой, лучший, более быстрый, отвод тепла от ТЭНа. Поэтому при одинаковой электрической мощности водяной нагреватель имеет меньшие геометрические размеры.

Тут можно привести простой пример: при выкипании воды в обычном электрическом чайнике ТЭН может разогреться докрасна, после чего прогореть до дыр. Такую же картину можно наблюдать и с обычными кипятильниками, предназначенными для кипячения воды в стакане или в ведре.

Приведенный пример наглядно говорит о том, что водяные ТЭНы ни в коем случае нельзя применять для работы в воздушной среде. Воздушные ТЭНы для нагрева воды использовать можно, вот только придется долго ждать, пока вода закипит.

Не на пользу водяным ТЭНам пойдет и слой накипи, образующийся в процессе работы. Накипь, как правило, имеет пористую структуру, и ее теплопроводность невелика. Поэтому тепло, выделяемое спиралью, в жидкость уходит плохо, зато сама спираль внутри нагревателя разогревается до весьма высокой температуры, что рано или поздно приведет к ее перегоранию.

Чтобы такого не произошло, желательно периодически очищать ТЭНы с помощью различных химических средств. Например, в телевизионной рекламе для защиты нагревателей стиральных машин рекомендуется средство «Calgon». Хотя по поводу этого средства существует множество самых различных мнений.

Как избавиться от накипи

Кроме химических средств для защиты от накипи используются различные устройства. Прежде всего, это магнитные преобразователи воды. В мощном магнитном поле кристаллы «жестких» солей меняют свою структуру, превращаются в хлопья, становятся мельче. Из таких хлопьев накипь образуется менее активно, большая часть хлопьев просто вымывается потоком воды. Этим и достигается защита нагревателей и трубопроводов от накипи. Магнитные фильтры-преобразователи выпускаются многими зарубежными фирмами, такие фирмы существуют и в России. Подобные фильтры выпускаются как врезного, так и накладного типа.

Электронные умягчители воды

В последнее время все более популярными становятся электронные умягчители воды. Внешне все выглядит очень просто. На трубу устанавливается небольшая коробочка, из которой выходят провода-антенны. Провода накручиваются вокруг трубы, при этом даже не надо счищать краску. Установить прибор можно в любом доступном месте, как показано на рисунке 7.

Рисунок 7. Электронный умягчитель воды

Единственное, что потребуется для подключения прибора, это розетка на 220В. Прибор рассчитан на долговременное включение, его не надо периодически отключать, поскольку выключение приведет к тому, что вода снова станет жесткой, опять будет образовываться накипь.

Принцип работы прибора сводится к излучению колебаний в диапазоне ультразвуковых частот, которые могут достигать до 50КГц. Частота колебаний регулируется с помощью пульта управления прибора. Излучения производятся пакетами по нескольку раз в секунду, что достигается использованием встроенного микроконтроллера. Мощность колебаний невелика, поэтому никакой угрозы для здоровья человека подобные приборы не представляют.

Целесообразность установки подобных приборов определить достаточно легко. Все сводится к тому, чтобы определить, насколько жесткая вода течет из водопроводной трубы. Тут даже не надо никаких «заумных» приборов: если после мытья ваша кожа становится сухой, от брызг воды на кафельной плитке появляются белые разводы, в чайнике появляется накипь, стиральная машина стирает медленнее, чем в начале эксплуатации – однозначно из крана течет жесткая вода. Все это может привести к выходу из строя нагревательных элементов, и, следовательно, самих чайников или стиральных машин.

Жесткая вода плохо растворяет различные моющие средства – от обычного мыла до супермодных стиральных порошков. В результате порошков приходится класть больше, но это помогает мало, так как кристаллы солей жесткости задерживаются в тканях, качество стирки оставляет желать лучшего. Все перечисленные признаки жесткости воды красноречиво говорят о том, что необходимо устанавливать умягчители воды.

Подключение и проверка ТЭНов

При подключении ТЭНа должен использоваться провод подходящего сечения. Здесь все зависит от тока, протекающего через ТЭН. Чаще всего известны два параметра. Это мощность самого нагревателя и напряжение питания. Для того, чтобы определить ток, достаточно разделить мощность на напряжение питания.

Простой пример. Пусть имеется ТЭН мощностью 1КВт (1000Вт) на напряжение питания 220В. Для такого нагревателя получается, что ток составит

I = P/U = 1000/220 = 4,545A.

Согласно таблицам, размещенным в ПУЭ, такой ток может обеспечить провод сечением 0,5мм2 (11А), но с целью обеспечения механической прочности лучше применить провод сечением не менее 2,5мм2. Как раз таким проводом чаще всего выполняется подвод электричества к розеткам.

Но перед тем, как производить подключение, следует убедиться в исправности даже нового, только что купленного ТЭНа. Прежде всего, надо измерить его сопротивление и проверить целостность изоляции. Сопротивление ТЭНа достаточно просто рассчитать. Для этого надо напряжение питания возвести в квадрат, и поделить на мощность. Например, для нагревателя мощностью 1000Вт этот расчет выглядит так:

220*220/1000=48,4Ом.

Такое сопротивление должен показать мультиметр при подключении его к выводам ТЭНа. Если же спираль оборвана, то, естественно, мультиметр покажет обрыв. Если взять ТЭН иной мощности, то сопротивление, естественно, будет другим.

Для проверки целостности изоляции следует измерить сопротивление между любым из выводов и металлическим корпусом ТЭНа. Сопротивление наполнителя-изолятора таково, что на любом пределе измерений мультиметр должен показать обрыв. Если окажется, что сопротивление равно нулю, то спираль имеет контакт с металлическим корпусом нагревателя. Такое может случиться даже с новым, только купленным ТЭНом.

Вообще для проверки изоляции применяется специальный прибор мегаомметр, но не всегда и не у всех он есть под рукой. Так что вполне подойдет и проверка обычным мультиметром. Хотя бы такую проверку надо сделать обязательно.

Как уже было сказано, ТЭНы можно изгибать даже после наполнения изолятором. Существуют нагреватели самой разнообразной формы: в виде прямой трубки, U-образные, свернутые в кольцо, змейку или спираль. Все зависит от устройства нагревательного прибора, в который предполагается установить ТЭН. Например, в проточном водонагревателе стиральной машины применяются ТЭНы свитые в спираль.

Некоторые ТЭНы имеют элементы защиты. Самая простая защита это термопредохранитель. Уж если он сгорел, то приходится менять весь ТЭН, но до пожара дело не дойдет. Есть и более сложная система защиты, позволяющая использовать ТЭН после ее срабатывания.

Одной из таких защит является защита на основе биметаллической пластины: тепло от перегретого ТЭНа изгибает биметаллическую пластину, которая размыкает контакт и обесточивает нагревательный элемент. После того, как температура снизится до допустимого значения, биметаллическая пластина разгибается, контакт замыкается и ТЭН снова готов к работе.

ТЭНы с терморегулятором

При отсутствии горячего водоснабжения приходится пользоваться бойлерами. Конструкция бойлеров достаточно проста. Это металлическая емкость, спрятанная в «шубу» из теплоизолятора, поверх которого находится декоративный металлический корпус. В корпус же врезан термометр, показывающий температуру воды. Конструкция бойлера показана на рисунке 8.

Рисунок 8. Бойлер накопительного типа

Некоторые бойлеры содержат магниевый анод. Его назначение защита от коррозии нагревателя и внутреннего бака бойлера. Магниевый анод является расходным материалом, его приходится периодически менять при обслуживании бойлера. Но в некоторых бойлерах, видимо, дешевой ценовой категории, такая защита не предусмотрена.

В качестве нагревательного элемента в бойлерах применяется ТЭН с терморегулятором, конструкция одного из них показана на рисунке 9.

Рисунок 9. ТЭН с терморегулятором

В пластмассовой коробке расположен микровыключатель, который срабатывает от жидкостного термодатчика (прямая трубка рядом с ТЭНом). Форма собственно ТЭНа может быть самой разнообразной, на рисунке показана самая простая. Все зависит от мощности и конструкции бойлера. Степень нагрева регулируется за счет положения механического контакта, управляемого белой круглой рукояткой, расположенной внизу коробки. Здесь же находятся клеммы для подвода электрического тока. Крепление нагревателя производится при помощи резьбы.

Мокрые и сухие ТЭНы

Подобный нагреватель находится в непосредственном контакте с водой, поэтому такой ТЭН называют «мокрым». Срок службы «мокрого» ТЭНа находится в пределах 2…5 лет, после чего его приходится менять. В общем-то, срок службы невелик.

Для увеличения срока службы нагревательного элемента и всего бойлера в целом французской компанией Atlantic в 90-х годах прошлого века была разработана конструкция «сухого» ТЭНа. Если сказать проще, то нагреватель был спрятан в металлическую защитную колбу, исключающую прямой контакт с водой: нагревательный элемент греется внутри колбы, которая передает тепло воде.

Естественно, что температура колбы намного ниже, чем собственно ТЭНа, поэтому образование накипи при той же жесткости воды происходит не столь интенсивно, в воду передается большее количество тепла. Срок службы таких нагревателей достигает 10…15 лет. Сказанное справедливо для хороших условий эксплуатации, прежде всего стабильности напряжения питания. Но даже и в хороших условиях «сухие» ТЭНы тоже вырабатывают свой ресурс, и их приходится менять.

Вот здесь обнаруживается еще одно достоинство технологии «сухого» ТЭНа: при замене нагревателя нет никакой необходимости сливать воду из бойлера, для чего следует отключать его от трубопровода. Достаточно просто вывернуть нагреватель и заменить его на новый.

Компания Atlantic, конечно же, запатентовала свое изобретение, после чего стала продавать лицензию другим фирмам. В настоящее время бойлеры с «сухим» нагревательным элементом выпускают и другие фирмы, например, Electrolux и Gorenje. Конструкция бойлера с «сухим» ТЭНом показана на рисунке 10.

Рисунок 10. Бойлер с «сухим» нагревателем

Кстати, на рисунке показан бойлер с керамическим стеатитовым нагревателем. Устройство такого нагревателя показано на рисунке 11.

Рисунок 11. Керамический нагреватель

На керамическом основании закреплена обычная открытая спираль из проволоки с высоким сопротивлением. Температура нагрева спирали достигает 800 градусов и передается в окружающую среду (воздух под защитной оболочкой) конвекцией и теплоизлучением. Естественно, что такой нагреватель применительно к бойлерам может работать только в защитной оболочке, в воздушной среде, прямой контакт с водой попросту исключен.

Спираль может быть намотана в несколько секций, о чем говорит наличие нескольких клемм для подключения. Это позволяет менять мощность нагревателя. Максимальная удельная мощность подобных нагревателей не превышает 9Вт/см2.

Условием нормальной работы такого нагревателя является отсутствие механических нагрузок, изгибов и вибраций. На поверхности не должно быть загрязнений в виде ржавчины и масляных пятен. И, конечно же, чем более стабильным будет напряжение питания, без выбросов и скачков, тем более долговечна работа нагревателя.

Но электротехника не стоит на месте. Технологии развиваются, усовершенствуются, поэтому кроме ТЭНов в настоящее время разработаны и успешно применяются самые разнообразные нагревательные элементы. Это керамические нагревательные элементы, карбоновые нагревательные элементы, инфракрасные нагревательные элементы, но это будет темой для другой статьи.

Продолжение статьи: Современные нагревательные элементы

electrik.info


Смотрите также